Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Blood ; 136(Supplement 1):25-26, 2020.
Article in English | PMC | ID: covidwho-1338960


IntroductionAn increasing number of evidence have reported the association of COVID-19 with increased incidence of thrombotic events. High incidences were initially reported in critically ill COVID-19 patients, but subsequently an increased incidence was also noticed in non-critically ill general ward patients. This has led to a universal recommendation of thromboprophylaxis for all COVID-19 patients by ASH and ISTH. As the data on COVID-19 and thrombosis continue to develop and evolve, we examined the data in two aspects. Firstly, other non-SARS-CoV-2 viral respiratory infections have also been reported to be associated with thrombotic events, be it arterial or venous. Thus, we aimed to compare the thrombotic rates between these two groups of patients directly to hopefully ascertain the actual thrombotic tendency in COVID-19 infections. Secondly, global hemostatic assays such as thromboelastogram and clot waveform analysis (CWA) have been used to demonstrate hypercoagulability in COVID-19 patients, albeit in a small group of patients and only in the critically ill. Incorporating these laboratory results into the management of thromboprophylaxis in COVID-19 is an attractive notion but more data and studies are definitely needed. Here, we evaluate the dynamic changes of hemostatic assays in patients with COVID-19 to better understand the overall coagulation profiles of COVID-19 infection.MethodsWe performed a single center, retrospective cohort study. All consecutive patients admitted to our hospital between 15 January and 10 April 2020 that were tested positive for COVID-19 or other non-SARS-CoV-2 respiratory viruses were included in our study. The main coagulation assays studied were prothrombin time and activated partial thromboplastin time and its associated CWA, min1, min2 and max2.FindingsWe included a total of 181 COVID-19 patients and 165 patients with non-SARS-CoV-2 respiratory viral infections. The respiratory viruses were rhinovirus (n=65), influenza A and B (n=46), adenovirus (n=13), human coronavirus 229E/NL63/OC43 (n=15), human enterovirus (n=3), metapneumovirus (n=6), parainfluenza virus 1 to 4 (n=11), respiratory syncytial virus (n=6) and human bocavirus 1 to 4 (n=0). The median age of COVID-19 patients was 37 (interquartile range [IQR], 30.5-51 years) versus 35 (IQR, 29-51.5) in the non-SAR-CoV-2 respiratory viruses group (P=0.12). Comorbidities, assessed by Charlson score, was also not statistically different between both groups (median score 0 (IQR, 0-1) in both groups, P=0.39). Majority of our patients had relatively mild infection as reflected by the low proportions of them requiring oxygen supplementation (11.0% in COVID-19 vs 4.8% in non-SARS-COV-2, P=0.035). COVID-19 patients had longer hospital stay (7 days (IQR, 5.5-13) vs 3 days (IQR, 2-3), P<0.001) and more required ICU support (5.0% vs 1.2%, P=0.04). Mortality rate was low in both groups. We reported two (1.0 event/1000-hospital-days) and one (1.8 event/1000-hospital-day) thrombotic events amongst COVID-19 group and non-SARS-COV-2 group respectively (P=0.63). All were myocardial infarction and occurred in intensive care unit. No venous thrombotic event was noted. There was no significant difference in all the coagulation parameters throughout the course of mild COVID-19 infection (Table 1). However, CWA parameters were significantly higher in severe COVID-19 infection compared with mild disease (min1: 6.48%/s vs 5.05%/s, P<0.001;min2: 0.92%/s2 vs 0.74%/s2, P=0.033), suggesting hypercoagulability in severe COVID-19 infection (Table 2 and Figure 1). We also observed that critically ill COVID-19 patients had higher absolute CWA parameters as compared to non-SARS-CoV-2 patients, albeit in small number of patients (Table 3).ConclusionThe thrombotic rates were low in both groups and did not differ significantly between COVID-19 and Non-SARS-CoV-2 patients. Nonetheless, our analysis of hemostatic parameters demonstrated hypercoagulability in COVID-19 as a dynamic process with the risk highest when the patients are critically ill. These c anges in hemostasis could be detected by CWA. With our findings, we suggest that a more individualized thromboprophylaxis approach, considering clinical and laboratory factors, is probably preferred over universal pharmacological thromboprophylaxis for all hospitalized COVID-19 patients and warrants further research.

J Med Virol ; 93(3): 1548-1555, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196475


During this coronavirus disease 2019 (COVID-19) pandemic, physicians have the important task of risk stratifying patients who present with acute respiratory illnesses. Clinical presentation of COVID-19, however, can be difficult to distinguish from other respiratory viral infections. Thus, identifying clinical features that are strongly associated with COVID-19 in comparison to other respiratory viruses can aid risk stratification and testing prioritization especially in situations where resources for virological testing and resources for isolation facilities are limited. In our retrospective cohort study comparing the clinical presentation of COVID-19 and other respiratory viral infections, we found that anosmia and dysgeusia were symptoms independently associated with COVID-19 and can be important differentiating symptoms in patients presenting with acute respiratory illness. On the other hand, laboratory abnormalities and radiological findings were not statistically different between the two groups. In comparing outcomes, patients with COVID-19 were more likely to need high dependency or intensive care unit care and had a longer median length of stay. With our findings, we emphasize that epidemiological risk factors and clinical symptoms are more useful than laboratory and radiological abnormalities in differentiating COVID-19 from other respiratory viral infections.

Anosmia/pathology , COVID-19/diagnosis , COVID-19/pathology , Dysgeusia/pathology , Adult , Ageusia/diagnosis , Ageusia/virology , Anosmia/diagnosis , Anosmia/virology , COVID-19/epidemiology , Critical Care/statistics & numerical data , Dysgeusia/diagnosis , Dysgeusia/virology , Female , Humans , Intensive Care Units/statistics & numerical data , Length of Stay , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Retrospective Studies , Risk Factors , SARS-CoV-2
Sci Rep ; 11(1): 1793, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-1065942


COVID-19 caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and other respiratory viral (non-CoV-2-RV) infections are associated with thrombotic complications. The differences in prothrombotic potential between SARS-CoV-2 and non-CoV-2-RV have not been well characterised. We compared the thrombotic rates between these two groups of patients directly and further delved into their coagulation profiles. In this single-center, retrospective cohort study, all consecutive COVID-19 and non-CoV-2-RV patients admitted between January 15th and April 10th 2020 were included. Coagulation parameters studied were prothrombin time and activated partial thromboplastin time and its associated clot waveform analysis (CWA) parameter, min1, min2 and max2. In the COVID-19 (n = 181) group there were two (1.0 event/1000-hospital-days) myocardial infarction events while one (1.8 event/1000-hospital-day) was reported in the non-CoV-2-RV (n = 165) group. These events occurred in patients who were severely ill. There were no venous thrombotic events. Coagulation parameters did not differ throughout the course of mild COVID-19. However, CWA parameters were significantly higher in severe COVID-19 compared with mild disease, suggesting hypercoagulability (min1: 6.48%/s vs 5.05%/s, P < 0.001; min2: 0.92%/s2 vs 0.74%/s2, P = 0.033). In conclusion, the thrombotic rates were low and did not differ between COVID-19 and non-CoV-2-RV patients. The hypercoagulability in COVID-19 is a highly dynamic process with the highest risk occurring when patients were most severely ill. Such changes in haemostasis could be detected by CWA. In our population, a more individualized thromboprophylaxis approach, considering clinical and laboratory factors, is preferred over universal pharmacological thromboprophylaxis for all hospitalized COVID-19 patients and such personalized approach warrants further research.

COVID-19/pathology , Thrombophilia/diagnosis , Virus Diseases/pathology , Adult , COVID-19/complications , COVID-19/virology , Female , Humans , Male , Myocardial Infarction/complications , Myocardial Infarction/diagnosis , Partial Thromboplastin Time , Prothrombin Time , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thrombophilia/complications , Virus Diseases/complications