Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Gastroenterology ; 162(7): 2135, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1860452
2.
Gut ; 71(7): 1426-1439, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1816781

ABSTRACT

The COVID-19 pandemic has raised considerable concerns that patients with inflammatory bowel disease (IBD), particularly those treated with immunosuppressive therapies, may have an increased risk of SARS-CoV-2 acquisition, develop worse outcomes following COVID-19, and have suboptimal vaccine response compared with the general population. In this review, we summarise data on the risk of COVID-19 and associated outcomes, and latest guidance on SARS-CoV-2 vaccines in patients with IBD. Emerging evidence suggests that commonly used medications for IBD, such as corticosteroids but not biologicals, were associated with adverse outcomes to COVID-19. There has been no increased risk of de novo, or delayed, IBD diagnoses, however, an overall decrease in endoscopy procedures has led to a rise in the number of missed endoscopic-detected cancers during the pandemic. The impact of IBD medication on vaccine response has been a research priority recently. Data suggest that patients with IBD treated with antitumour necrosis factor (TNF) medications had attenuated humoral responses to SARS-CoV-2 vaccines, and more rapid antibody decay, compared with non-anti-TNF-treated patients. Reassuringly, rates of breakthrough infections and hospitalisations in all patients who received vaccines, irrespective of IBD treatment, remained low. International guidelines recommend that all patients with IBD treated with immunosuppressive therapies should receive, at any point during their treatment cycle, three primary doses of SARS-CoV-2 vaccines with a further booster dose as soon as possible. Future research should focus on our understanding of the rate of antibody decay in biological-treated patients, which patients require additional doses of SARS-CoV-2 vaccine, the long-term risks of COVID-19 on IBD disease course and activity, and the potential risk of long COVID-19 in patients with IBD.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , COVID-19/complications , COVID-19/epidemiology , COVID-19 Vaccines , Chronic Disease , Humans , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/epidemiology , Pandemics/prevention & control , SARS-CoV-2
3.
Gastroenterology ; 163(1): 337-338, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1768931
4.
Gut ; 71(6): 1106-1116, 2022 06.
Article in English | MEDLINE | ID: covidwho-1685679

ABSTRACT

OBJECTIVE: The gut microbiota plays a key role in modulating host immune response. We conducted a prospective, observational study to examine gut microbiota composition in association with immune responses and adverse events in adults who have received the inactivated vaccine (CoronaVac; Sinovac) or the mRNA vaccine (BNT162b2; BioNTech; Comirnaty). DESIGN: We performed shotgun metagenomic sequencing in stool samples of 138 COVID-19 vaccinees (37 CoronaVac and 101 BNT162b2 vaccinees) collected at baseline and 1 month after second dose of vaccination. Immune markers were measured by SARS-CoV-2 surrogate virus neutralisation test and spike receptor-binding domain IgG ELISA. RESULTS: We found a significantly lower immune response in recipients of CoronaVac than BNT162b2 vaccines (p<0.05). Bifidobacterium adolescentis was persistently higher in subjects with high neutralising antibodies to CoronaVac vaccine (p=0.023) and their baseline gut microbiome was enriched in pathways related to carbohydrate metabolism (linear discriminant analysis (LDA) scores >2 and p<0.05). Neutralising antibodies in BNT162b2 vaccinees showed a positive correlation with the total abundance of bacteria with flagella and fimbriae including Roseburia faecis (p=0.028). The abundance of Prevotella copri and two Megamonas species were enriched in individuals with fewer adverse events following either of the vaccines indicating that these bacteria may play an anti-inflammatory role in host immune response (LDA scores>3 and p<0.05). CONCLUSION: Our study has identified specific gut microbiota markers in association with improved immune response and reduced adverse events following COVID-19 vaccines. Microbiota-targeted interventions have the potential to complement effectiveness of COVID-19 vaccines.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunogenicity, Vaccine , Prospective Studies , SARS-CoV-2 , Vaccines, Synthetic
5.
J Gastroenterol Hepatol ; 37(5): 823-831, 2022 May.
Article in English | MEDLINE | ID: covidwho-1685355

ABSTRACT

BACKGROUND AND AIM: Gut dysbiosis is associated with immune dysfunction and severity of COVID-19. Whether targeting dysbiosis will improve outcomes of COVID-19 is unknown. This study aimed to assess the effects of a novel gut microbiota-derived synbiotic formula (SIM01) as an adjuvant therapy on immunological responses and changes in gut microbiota of hospitalized COVID-19 patients. METHODS: This was an open-label, proof-of-concept study. Consecutive COVID-19 patients admitted to an infectious disease referral center in Hong Kong were given a novel formula of Bifidobacteria strains, galactooligosaccharides, xylooligosaccharide, and resistant dextrin (SIM01). The latter was derived from metagenomic databases of COVID-19 patients and healthy population. COVID-19 patients who were admitted under another independent infectious disease team during the same period without receiving SIM01 acted as controls. All patients received standard treatments for COVID-19 according to the hospital protocol. We assessed antibody response, plasma proinflammatory markers, nasopharyngeal SARS-CoV-2 viral load, and fecal microbiota profile from admission up to week 5. RESULTS: Twenty-five consecutive COVID-19 patients received SIM01 for 28 days; 30 patients who did not receive the formula acted as controls. Significantly more patients receiving SIM01 than controls developed SARS-CoV-2 IgG antibody (88% vs 63.3%; P = 0.037) by Day 16. One (4%) and 8 patients (26.7%) in the SIM01 and control group, respectively, failed to develop positive IgG antibody upon discharge. At week 5, plasma levels of interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), macrophage colony-stimulating factor (M-CSF), tumor necrosis factor (TNF-α), and IL-1RA reduced significantly in the SIM01 but not in the control group. There was a significant negative correlation of nasopharyngeal SARS-CoV-2 viral load and SIM01 intervention. Metagenomic analysis showed that bacterial species in SIM01 formula were found in greater abundance leading to enrichment of commensal bacteria and suppression of opportunistic pathogens in COVID-19 patients by week 4 and week 5. CONCLUSIONS: This proof-of-concept study suggested that the use of a novel gut microbiota-derived synbiotic formula, SIM01, hastened antibody formation against SARS-CoV-2, reduced nasopharyngeal viral load, reduced pro-inflammatory immune markers, and restored gut dysbiosis in hospitalised COVID-19 patients.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Synbiotics , Bacteria , COVID-19/therapy , Dysbiosis , Humans , Immunoglobulin G , Pilot Projects , SARS-CoV-2
6.
Inflamm Bowel Dis ; 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1626825

ABSTRACT

BACKGROUND: Cases of coronavirus disease 2019 (COVID-19) have emerged in discrete waves. We explored temporal trends in the reporting of COVID-19 in inflammatory bowel disease (IBD) patients. METHODS: The Surveillance Epidemiology of Coronavirus Under Research Exclusion for Inflammatory Bowel Disease (SECURE-IBD) is an international registry of IBD patients diagnosed with COVID-19. The average percent changes (APCs) were calculated in weekly reported cases of COVID-19 during the periods of March 22 to September 12, September 13 to December 12, 2020, and December 13 to July 31, 2021. RESULTS: Across 73 countries, 6404 cases of COVID-19 were reported in IBD patients. COVID-19 reporting decreased globally by 4.2% per week (95% CI, -5.3% to -3.0%) from March 22 to September 12, 2020, then climbed by 10.2% per week (95% CI, 8.1%-12.3%) from September 13 to December 12, 2020, and then declined by 6.3% per week (95% CI, -7.8% to -4.7%). In the fall of 2020, weekly reporting climbed in North America (APC, 11.3%; 95% CI, 8.8-13.8) and Europe (APC, 17.7%; 95% CI, 12.1%-23.5%), whereas reporting was stable in Asia (APC, -8.1%; 95% CI, -15.6-0.1). From December 13, 2020, to July 31, 2021, reporting of COVID-19 in those with IBD declined in North America (APC, -8.5%; 95% CI, -10.2 to -6.7) and Europe (APC, -5.4%; 95% CI, -7.2 to -3.6) and was stable in Latin America (APC, -1.5%; 95% CI, -3.5% to 0.6%). CONCLUSIONS: Temporal trends in reporting of COVID-19 in those with IBD are consistent with the epidemiological patterns COVID-19 globally.

7.
Gastroenterology ; 162(2): 548-561.e4, 2022 02.
Article in English | MEDLINE | ID: covidwho-1475507

ABSTRACT

BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with altered gut microbiota composition. Phylogenetic groups of gut bacteria involved in the metabolism of short chain fatty acids (SCFAs) were depleted in SARS-CoV-2-infected patients. We aimed to characterize a functional profile of the gut microbiome in patients with COVID-19 before and after disease resolution. METHODS: We performed shotgun metagenomic sequencing on fecal samples from 66 antibiotics-naïve patients with COVID-19 and 70 non-COVID-19 controls. Serial fecal samples were collected (at up to 6 times points) during hospitalization and beyond 1 month after discharge. We assessed gut microbial pathways in association with disease severity and blood inflammatory markers. We also determined changes of microbial functions in fecal samples before and after disease resolution and validated these functions using targeted analysis of fecal metabolites. RESULTS: Compared with non-COVID-19 controls, patients with COVID-19 with severe/critical illness showed significant alterations in gut microbiome functionality (P < .001), characterized by impaired capacity of gut microbiome for SCFA and L-isoleucine biosynthesis and enhanced capacity for urea production. Impaired SCFA and L-isoleucine biosynthesis in gut microbiome persisted beyond 30 days after recovery in patients with COVID-19. Targeted analysis of fecal metabolites showed significantly lower fecal concentrations of SCFAs and L-isoleucine in patients with COVID-19 before and after disease resolution. Lack of SCFA and L-isoleucine biosynthesis significantly correlated with disease severity and increased plasma concentrations of CXCL-10, NT- proB-type natriuretic peptide, and C-reactive protein (all P < .05). CONCLUSIONS: Gut microbiome of patients with COVID-19 displayed impaired capacity for SCFA and L-isoleucine biosynthesis that persisted even after disease resolution. These 2 microbial functions correlated with host immune response underscoring the importance of gut microbial functions in SARS-CoV-2 infection pathogenesis and outcome.


Subject(s)
COVID-19/microbiology , Fatty Acids, Volatile/biosynthesis , Gastrointestinal Microbiome/genetics , Immunity/physiology , Isoleucine/biosynthesis , Adult , Biomarkers/blood , Case-Control Studies , Feces/microbiology , Female , Humans , Male , Metagenomics , Middle Aged , Phylogeny , SARS-CoV-2 , Severity of Illness Index
9.
Gastroenterology ; 160(6): 2195-2196, 2021 05.
Article in English | MEDLINE | ID: covidwho-1287837
10.
Clin Gastroenterol Hepatol ; 19(10): 2210-2213.e3, 2021 10.
Article in English | MEDLINE | ID: covidwho-1252551

ABSTRACT

The coronavirus disease 2019 (COVID-19) has affected more than 29 million people and led to more than 542,000 deaths in the United States.1 Older age, comorbidities, and racial and ethnic minority status are associated with severe COVID-19.2 Among patients with inflammatory bowel disease (IBD), racial and ethnic minorities have worse outcomes, mediated in part by inequitable health care access.3 Racial and ethnic minority patients with IBD and COVID-19 may be an especially vulnerable population. The purpose of this study was to evaluate racial and ethnic disparities in COVID-19 outcomes among IBD patients and the impact of non-IBD comorbidities on observed disparities.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Aged , Humans , Minority Groups , SARS-CoV-2 , United States/epidemiology
11.
Gut ; 70(9): 1605-1608, 2021 09.
Article in English | MEDLINE | ID: covidwho-1203978
12.
Microbiome ; 9(1): 91, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1183579

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by the enveloped RNA virus SARS-CoV-2 primarily affects the respiratory and gastrointestinal tracts. SARS-CoV-2 was isolated from fecal samples, and active viral replication was reported in human intestinal cells. The human gut also harbors an enormous amount of resident viruses (collectively known as the virome) that play a role in regulating host immunity and disease pathophysiology. Understanding gut virome perturbation that underlies SARS-CoV-2 infection and severity is an unmet need. METHODS: We enrolled 98 COVID-19 patients with varying disease severity (3 asymptomatic, 53 mild, 34 moderate, 5 severe, 3 critical) and 78 non-COVID-19 controls matched for gender and co-morbidities. All subjects had fecal specimens sampled at inclusion. Blood specimens were collected for COVID-19 patients at admission to test for inflammatory markers and white cell counts. Among COVID-19 cases, 37 (38%) patients had serial fecal samples collected 2 to 3 times per week from time of hospitalization until after discharge. Using shotgun metagenomics sequencing, we sequenced and profiled the fecal RNA and DNA virome. We investigated alterations and longitudinal dynamics of the gut virome in association with disease severity and blood parameters. RESULTS: Patients with COVID-19 showed underrepresentation of Pepper mild mottle virus (RNA virus) and multiple bacteriophage lineages (DNA viruses) and enrichment of environment-derived eukaryotic DNA viruses in fecal samples, compared to non-COVID-19 subjects. Such gut virome alterations persisted up to 30 days after disease resolution. Fecal virome in SARS-CoV-2 infection harbored more stress-, inflammation-, and virulence-associated gene encoding capacities including those pertaining to bacteriophage integration, DNA repair, and metabolism and virulence associated with their bacterial host. Baseline fecal abundance of 10 virus species (1 RNA virus, pepper chlorotic spot virus, and 9 DNA virus species) inversely correlated with disease COVID-19 severity. These viruses inversely correlated with blood levels of pro-inflammatory proteins, white cells, and neutrophils. Among the 10 COVID-19 severity-associated DNA virus species, 4 showed inverse correlation with age; 5 showed persistent lower abundance both during disease course and after disease resolution relative to non-COVID-19 subjects. CONCLUSIONS: Both enteric RNA and DNA virome in COVID-19 patients were different from non-COVID-19 subjects, which persisted after disease resolution of COVID-19. Gut virome may calibrate host immunity and regulate severity to SARS-CoV-2 infection. Our observation that gut viruses inversely correlated with both severity of COVID-19 and host age may partly explain that older subjects are prone to severe and worse COVID-19 outcomes. Altogether, our data highlight the importance of human gut virome in severity and potentially therapeutics of COVID-19. Video Abstract.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Child, Preschool , DNA , Gastrointestinal Microbiome/genetics , Humans , RNA , SARS-CoV-2 , Virome
16.
Gastroenterology ; 160(6): 2193-2195, 2021 05.
Article in English | MEDLINE | ID: covidwho-1039657
17.
Gut ; 70(4): 698-706, 2021 04.
Article in English | MEDLINE | ID: covidwho-1024254

ABSTRACT

OBJECTIVE: Although COVID-19 is primarily a respiratory illness, there is mounting evidence suggesting that the GI tract is involved in this disease. We investigated whether the gut microbiome is linked to disease severity in patients with COVID-19, and whether perturbations in microbiome composition, if any, resolve with clearance of the SARS-CoV-2 virus. METHODS: In this two-hospital cohort study, we obtained blood, stool and patient records from 100 patients with laboratory-confirmed SARS-CoV-2 infection. Serial stool samples were collected from 27 of the 100 patients up to 30 days after clearance of SARS-CoV-2. Gut microbiome compositions were characterised by shotgun sequencing total DNA extracted from stools. Concentrations of inflammatory cytokines and blood markers were measured from plasma. RESULTS: Gut microbiome composition was significantly altered in patients with COVID-19 compared with non-COVID-19 individuals irrespective of whether patients had received medication (p<0.01). Several gut commensals with known immunomodulatory potential such as Faecalibacterium prausnitzii, Eubacterium rectale and bifidobacteria were underrepresented in patients and remained low in samples collected up to 30 days after disease resolution. Moreover, this perturbed composition exhibited stratification with disease severity concordant with elevated concentrations of inflammatory cytokines and blood markers such as C reactive protein, lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyl transferase. CONCLUSION: Associations between gut microbiota composition, levels of cytokines and inflammatory markers in patients with COVID-19 suggest that the gut microbiome is involved in the magnitude of COVID-19 severity possibly via modulating host immune responses. Furthermore, the gut microbiota dysbiosis after disease resolution could contribute to persistent symptoms, highlighting a need to understand how gut microorganisms are involved in inflammation and COVID-19.


Subject(s)
Bacteria , COVID-19 , Dysbiosis , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract , Immunity , SARS-CoV-2 , Adult , Bacteria/genetics , Bacteria/immunology , Bacteria/isolation & purification , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Cytokines/analysis , DNA, Bacterial/isolation & purification , Dysbiosis/epidemiology , Dysbiosis/etiology , Dysbiosis/immunology , Dysbiosis/virology , Female , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/virology , Hong Kong , Humans , Male , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Transferases/analysis
18.
Trends Food Sci Technol ; 108: 187-196, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-974673

ABSTRACT

BACKGROUND: Patients with COVID-19 caused by SARS-CoV-2 exhibit diverse clinical manifestations and severity including enteric involvement. Commensal gut bacteria can contribute to defense against potential pathogens by promoting beneficial immune interactions. Interventions targeting the gut microbiome may have systemic anti-viral effects in SARS-CoV-2 infection. SCOPE AND APPROACH: To summarise alterations of gut microbiota in patients with COVID-19 including impact of specific bacteria on disease severity, discuss current knowledge on the role of probiotics, prebiotics and dietary approaches including vitamin D in preventing and reducing disease susceptibility and review clinical studies using probiotics to target coronavirus. A literature review on SARS-CoV-2, COVID-19, gut microbiome and immunity was undertaken and relevant literature was summarised and critically examined. KEY FINDINGS AND CONCLUSIONS: Integrity of gut microbiome was perturbed in SARS-CoV-2 infections and associated with disease severity. Poor prognosis in SARS-CoV-2 infection was observed in subjects with underlying co-morbidities who had increased gut permeability and reduced gut microbiome diversity. Dietary microbes, including probiotics or selected prebiotics of Chinese origin, had anti-viral effects against other forms of coronavirus, and could positively impact host immune functions during SARS-CoV-2 infection. Numerous studies are investigating the role of probiotics in preventing and reducing susceptibility to SARS-CoV-2 infection in healthcare workers, household contacts and affected patients. An approach to strengthen intestinal barrier and lower pro-inflammatory states by adopting a more diversified diet during COVID-19 pandemic.SARS-CoV-2 infection is associated with immune dysfunction and gut microbiota alterations. Delineating mechanisms of probiotics, prebiotics and diet with anti-SARS-CoV-2 immunity present opportunities for discovery of microbial therapeutics to prevent and treat COVID-19.

19.
Therap Adv Gastroenterol ; 13: 1756284820974914, 2020.
Article in English | MEDLINE | ID: covidwho-951814

ABSTRACT

The novel coronavirus infection (COVID-19) caused by the SARS-CoV-2 virus has spread rapidly across the globe, culminating in major global morbidity and mortality. As such, there has been a rapid escalation in scientific and clinical activity aimed at increasing our comprehension of this virus. This volume of work has led to early insights into risk factors associated with severity of disease, and mechanisms that underpin the virulence and dynamics involved in viral transmission. These insights ultimately may help guide potential therapeutics to reduce the human, economic and social impact of this pandemic. Importantly, the gastrointestinal (GI) tract has emerged as an important organ influencing propensity to, and potentially severity of, COVID-19 infection. Furthermore, the gut microbiome has been linked to a variety of risk factors for COVID-19 infection, and manipulation of the gut microbiome is an attractive potential therapeutic target for a number of diseases. While data profiling the gut microbiome in COVID-19 infection to date are limited, they support the possibility of several routes of interaction between COVID-19, the gut microbiome, angiotensin converting enzyme 2 (ACE-2) expression in the small bowel and colon and gut inflammation. This article will explore the evidence that implicates the gut microbiome as a contributing factor to the pathogenesis, severity and disease course of COVID-19, and speculate about the gut microbiome's capability as a therapeutic avenue against COVID-19. LAY SUMMARY: It has been noted that certain baseline gut profiles of COVID-19 patients are associated with a more severe disease course, and the gut microbiome impacts the disease course of several contributory risk factors to the severity of COVID-19. A protein called ACE-2, which is found in the small intestine among other sites, is a key receptor for COVID-19 virus entry; there is evidence that the gut microbiome influences ACE-2 receptor expression, and hence may play a role in influencing COVID-19 infectivity and disease severity. Furthermore, the gut microbiome plays a significant role in immune regulation, and hence may be pivotal in influencing the immune response to COVID-19. In terms of understanding COVID-19 treatments, the gut microbiome is known to interact with several drug classes being used to target COVID-19 and should be factored into our understanding of how patients respond to treatment. Importantly, our understanding of the role of the gut microbiome in COVID-19 infection remains in its infancy, but future research may potentially aid our mechanistic understanding of viral infection, and new ways in which we might approach treating it.

20.
J Crohns Colitis ; 15(5): 860-863, 2021 May 04.
Article in English | MEDLINE | ID: covidwho-940842

ABSTRACT

BACKGROUND: We aimed to describe physician practice patterns in holding or continuing IBD therapy in the setting of COVID-19 infection, using the Surveillance Epidemiology of Coronavirus Under Research Exclusion for Inflammatory Bowel Disease [SECURE-IBD] registry. METHODS: IBD medications that were stopped due to COVID-19 were recorded in the SECURE-IBD registry in addition to demographic and clinical data. We conducted descriptive analyses to understand characteristics associated with stopping IBD medications in response to active COVID-19 infection. RESULTS: Of 1499 patients, IBD medications were stopped in 518 [34.6%] patients. On bivariate and multivariable analyses, a diagnosis of ulcerative colitis or IBD-unspecified was associated with a lower odds of stopping medication compared with Crohn's disease (adjusted odds ratio [aOR] 0.6, 95% confidence interval [CI] 0.48, 0.75). When evaluating specific medications, 5-aminosalicylic acid was more likely to be continued [p <0.001] whereas anti-tumour necrosis factor therapy and immunomodulator therapy were more likely to be stopped [global p <0.001]. Other demographic and clinical characteristics did not affect prescription patterns. CONCLUSIONS: IBD medications other than immunomodulators were continued in the majority of IBD patients with COVID-19, in the international SECURE-IBD registry. Future studies are needed to understand the impact of stopping or continuing IBD medications on IBD- and COVID-19 related outcomes.


Subject(s)
COVID-19/epidemiology , Inflammatory Bowel Diseases/drug therapy , Practice Patterns, Physicians'/statistics & numerical data , Adult , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Female , Glucocorticoids/therapeutic use , Humans , Immunologic Factors/therapeutic use , Inflammatory Bowel Diseases/epidemiology , Integrins/antagonists & inhibitors , Male , Registries , Tumor Necrosis Factor Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL