Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
BMJ Open ; 11(7): e053036, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1301650


OBJECTIVE: To investigate maternal immunoglobulins' (IgM, IgG) response to SARS-CoV-2 infection during pregnancy and IgG transplacental transfer, to characterise neonatal antibody response to SARS-CoV-2 infection, and to longitudinally follow actively and passively acquired antibodies in infants. DESIGN: A prospective observational study. SETTING: Public healthcare system in Santa Clara County (California, USA). PARTICIPANTS: Women with symptomatic or asymptomatic SARS-CoV-2 infection during pregnancy and their infants were enrolled between 15 April 2020 and 31 March 2021. OUTCOMES: SARS-CoV-2 serology analyses in the cord and maternal blood at delivery and longitudinally in infant blood between birth and 28 weeks of life. RESULTS: Of 145 mothers who tested positive for SARS-CoV-2 during pregnancy, 86 had symptomatic infections: 78 with mild-moderate symptoms, and 8 with severe-critical symptoms. The seropositivity rates of the mothers at delivery was 65% (95% CI 0.56% to 0.73%) and the cord blood was 58% (95% CI 0.49% to 0.66%). IgG levels significantly correlated between the maternal and cord blood (Rs=0.93, p<0.0001). IgG transplacental transfer ratio was significantly higher when the first maternal positive PCR was 60-180 days before delivery compared with <60 days (1.2 vs 0.6, p<0.0001). Infant IgG seroreversion rates over follow-up periods of 1-4, 5-12, and 13-28 weeks were 8% (4 of 48), 12% (3 of 25), and 38% (5 of 13), respectively. The IgG seropositivity in the infants was positively related to IgG levels in the cord blood and persisted up to 6 months of age. Two newborns showed seroconversion at 2 weeks of age with high levels of IgM and IgG, including one premature infant with confirmed intrapartum infection. CONCLUSIONS: Maternal SARS-CoV-2 IgG is efficiently transferred across the placenta when infections occur more than 2 months before delivery. Maternally derived passive immunity may persist in infants up to 6 months of life. Neonates are capable of mounting a strong antibody response to perinatal SARS-CoV-2 infection.

Clin Ophthalmol ; 15: 1041-1054, 2021.
Article in English | MEDLINE | ID: covidwho-1140597


Purpose: This study evaluated real-world treatment of dry eye disease (DED) with lifitegrast. Patients and Methods: Ophthalmologists and optometrists treating patients with DED were invited to participate through a healthcare provider (HCP)-based panel. HCPs completed a provider survey and contributed data toward a chart review for up to five qualifying patients with DED who initiated lifitegrast ophthalmic solution (index date) between 01/01/2017 (US) or 01/01/2018 (Canada) and 06/30/2019. Patient demographics, treatments, clinical characteristics, and outcomes (ie, severity, signs, symptoms) were collected for the 6-month pre-index period and up to 12-months post-index. Results: For this study, 517 HCPs contributed 600 patient charts. Among 554 and 281 patients with follow-up at 6 and 12-months post-index, 512 (92.4%) and 238 (84.7%) patients had ongoing lifitegrast treatment, respectively. Other DED-related treatments were less frequently used post-index with lifitegrast vs pre-index: over-the-counter artificial tear use (45.2% vs 75.5%), topical corticosteroids (3.8% vs 18.8%), any cyclosporine (3.0% vs 20.5%). At 3-months (n=571) and 12-months (n=320) post-index vs pre-index, fewer patients had eye dryness (47 [8.2%] and 16 [5.0%] vs 525 [87.5%]), blurred vision (28 [4.9%] and 11 [3.4%] vs 346 [57.7%]), ocular burning/stinging (25 [4.4%] and 8 [2.5%] vs 336 [56.0%]), depression (8 [1.4%] and 9 [2.8%] vs 55 [9.2%]), fatigue (4 [0.7%] and 1 [0.3%] vs 82 [13.7%]), and headache (1 [0.2%] and 0 vs 19 [3.2%]). At 3 and 12-months post-index vs pre-index, average corneal staining score was numerically lower (2.7 and 2.0 vs 6.5), and average Schirmer score (10.6 and 10 vs 6.3) and tear film break-up time (7.3 and 8.0 vs 4.8) higher. Conclusion: The majority of patients had ongoing lifitegrast treatment 6-months post-index with reduction in overall treatment burden. Improvement in DED signs and symptoms, including QoL impacts, was evident at 3 months and up to 12 months after lifitegrast initiation.

J Clin Microbiol ; 58(10)2020 09 22.
Article in English | MEDLINE | ID: covidwho-684577


The COVID-19 pandemic caused by the new SARS-CoV-2 coronavirus has imposed severe challenges on laboratories in their effort to achieve sufficient diagnostic testing capability for identifying infected individuals. In this study, we report the analytical and clinical performance characteristics of a new, high-throughput, fully automated nucleic acid amplification test system for the detection of SARS-CoV-2. The assay utilizes target capture, transcription-mediated amplification, and acridinium ester-labeled probe chemistry on the automated Panther system to directly amplify and detect two separate target sequences in the open reading frame 1ab (ORF1ab) region of the SARS-CoV-2 RNA genome. The probit 95% limit of detection of the assay was determined to be 0.004 50% tissue culture infective dose (TCID50)/ml using inactivated virus and 25 copies/ml (c/ml) using synthetic in vitro transcript RNA targets. Analytical sensitivity (100% detection) was confirmed to be 83 to 194 c/ml using three commercially available SARS-CoV-2 nucleic acid controls. No cross-reactivity or interference was observed with testing of six related human coronaviruses, as well as 24 other viral, fungal, and bacterial pathogens, at high titers. Clinical nasopharyngeal swab specimen testing (n = 140) showed 100%, 98.7%, and 99.3% positive, negative, and overall agreement, respectively, with a validated reverse transcription-PCR nucleic acid amplification test (NAAT) for SARS-CoV-2 RNA. These results provide validation evidence for a sensitive and specific method for pandemic-scale automated molecular diagnostic testing for SARS-CoV-2.

Betacoronavirus/isolation & purification , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Automation, Laboratory , Betacoronavirus/genetics , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Humans , Nasopharynx/virology , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Viral Proteins/genetics