ABSTRACT
Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.
Subject(s)
Antiviral Agents , COVID-19 , Coronavirus 3C Proteases , Nitriles , SARS-CoV-2 , Viral Protease Inhibitors , Humans , Antiviral Agents/pharmacology , Cysteine/chemistry , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Viral Protease Inhibitors/pharmacologyABSTRACT
Background: Indirect cardiomyocyte damage-related hyperinflammatory response is one of the key mechanisms in COVID-19-induced fulminant myocarditis. In addition to the clinical benefit of using cytokines absorption hemofiltration, the effectiveness of instituting veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support for cardiac compromise has been reported. However, current literature enunciates a paucity of available data on the effectiveness of these novel modalities. Case Presentation: We reported a 9-year-old boy with recurrent COVID-19 infection-causing fulminant myocarditis, who was treated successfully by using novel modalities of oXiris ® hemofilter continuous venovenous hemofiltration (CVVH) and VA-ECMO. The patient made a full recovery without any sequelae. Conclusion: We conclude that the novel highly-absorptive hemofilter CVVH and VA-ECMO may be effective treatment modalities in managing SARS-CoV-2-induced fulminant myocarditis. Our report highlights the need for further well-designed investigations to confirm this extrapolation.
ABSTRACT
Soluble angiotensin-converting enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses using ACE2 as their receptor. Using structure-guided approaches, we developed a series of bivalent ACE2-Fcs harboring functionally and structurally validated mutations that enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain recognition by up to ~12-fold and remove angiotensin enzymatic activity. The lead variant M81 potently cross-neutralized SARS-CoV-2 variants of concern (VOCs), including Omicron, at subnanomolar half-maximal inhibitory concentration and was capable of robust Fc-effector functions, including antibody-dependent cellular cytotoxicity, phagocytosis, and complement deposition. When tested in a stringent K18-hACE2 mouse model, Fc-enhanced ACE2-Fc delayed death by 3 to 5 days or effectively resolved lethal SARS-CoV-2 infection in both prophylactic and therapeutic settings via the combined effects of neutralization and Fc-effector functions. These data add to the demonstrated utility of soluble ACE2 as a valuable SARS-CoV-2 antiviral and indicate that Fc-effector functions may constitute an important component of ACE2-Fc therapeutic activity.
ABSTRACT
BACKGROUND AND OBJECTIVES: Infections with human parvovirus B19 (B19V) are transmissible by blood components and plasma-derived medicines. The European Pharmacopoeia regulates maximum levels of virus allowed in manufacturers' plasma pools. To evaluate contamination risk prior to re-introduction of UK-sourced plasma for manufacturing, we investigated viraemia frequencies of B19V in plasma samples collected from blood donors before and during COVID-enforced lockdown. MATERIALS AND METHODS: Quantitative PCR for B19V DNA was used to screen pools of 96 anonymised plasma samples collected in England from 2017 (n = 29 505), 2020 (n = 3360) and 2021 (n = 43 200). Selected positive pools were resolved into individual samples. Data on donor notifications and related lookback investigations were collected from European countries by on-line survey in 2020. RESULTS: Screening of 76 065 donations identified 80 B19V-positive pools. While most positive samples had low viral loads (<105 IU ml-1 ), primarily from 2017 (77/29 505; 0.3%), two contained high levels of B19V DNA (1.3 × 108 and 6.3 × 106 IU ml-1 ), both likely to contaminate a final manufacturer's pool and lead to discard. The incidence of B19V infection during lockdown was reduced (1/3360 in 2020; 0/43 200 in 2021). Genomic analysis of positive pools resolved to single samples identified B19V genotype 1 in all nine samples. Seroprevalence of anti-B19V IgG antibodies was 75% (143/192). A survey of B19V screening practices in Europe demonstrated considerable variability. Two blood establishments informed infected blood donors of positive B19V results. CONCLUSION: Information on seroprevalence, incidence and viral loads of B19V viraemia is contributory the evaluation of alternative operational screening strategies for plasma testing.
Subject(s)
COVID-19 , Parvoviridae Infections , Parvovirus B19, Human , Antibodies, Viral , Blood Donors , Communicable Disease Control , DNA, Viral , Humans , Immunoglobulin G , Parvoviridae Infections/epidemiology , Parvovirus B19, Human/genetics , Seroepidemiologic Studies , Viral Load , Viremia/epidemiologyABSTRACT
Background: Evaluation of susceptibility to emerging SARS-CoV-2 variants of concern (VOC) requires rapid screening tests for neutralising antibodies which provide protection. Methods: Firstly, we developed a receptor-binding domain-specific haemagglutination test (HAT) to Wuhan and VOC (alpha, beta, gamma and delta) and compared to pseudotype, microneutralisation and virus neutralisation assays in 835 convalescent sera. Secondly, we investigated the antibody response using the HAT after two doses of mRNA (BNT162b2) vaccination. Sera were collected at baseline, three weeks after the first and second vaccinations from older (80-99 years, n = 89) and younger adults (23-77 years, n = 310) and compared to convalescent sera from naturally infected individuals (1-89 years, n = 307). Results: Here we show that HAT antibodies highly correlated with neutralising antibodies (R = 0.72-0.88) in convalescent sera. Home-dwelling older individuals have significantly lower antibodies to the Wuhan strain after one and two doses of BNT162b2 vaccine than younger adult vaccinees and naturally infected individuals. Moverover, a second vaccine dose boosts and broadens the antibody repertoire to VOC in naïve, not previously infected older and younger adults. Most (72-76%) older adults respond after two vaccinations to alpha and delta, but only 58-62% to beta and gamma, compared to 96-97% of younger vaccinees and 68-76% of infected individuals. Previously infected older individuals have, similarly to younger adults, high antibody titres after one vaccination. Conclusions: Overall, HAT provides a surrogate marker for neutralising antibodies, which can be used as a simple inexpensive, rapid test. HAT can be rapidly adaptable to emerging VOC for large-scale evaluation of potentially decreasing vaccine effectiveness.
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic virus that has caused the global COVID-19 pandemic. Tracing the evolution and transmission of the virus is crucial to respond to and control the pandemic through appropriate intervention strategies. This paper reports and analyses genomic mutations in the coding regions of SARS-CoV-2 and their probable protein secondary structure and solvent accessibility changes, which are predicted using deep learning models. Prediction results suggest that mutation D614G in the virus spike protein, which has attracted much attention from researchers, is unlikely to make changes in protein secondary structure and relative solvent accessibility. Based on 6324 viral genome sequences, we create a spreadsheet dataset of point mutations that can facilitate the investigation of SARS-CoV-2 in many perspectives, especially in tracing the evolution and worldwide spread of the virus. Our analysis results also show that coding genes E, M, ORF6, ORF7a, ORF7b and ORF10 are most stable, potentially suitable to be targeted for vaccine and drug development.