Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Health Econ Rev ; 12(1): 15, 2022 Feb 14.
Article in English | MEDLINE | ID: covidwho-1690875

ABSTRACT

BACKGROUND: Antigen-based rapid diagnostic tests (Ag-RDT) have been implemented in hospitals and nursing homes to screen for infectious individuals without symptoms suggestive of SARS-CoV-2 infections and to prevent entry into these high-risk settings. Despite their benefits for screening, the cost of large-scale implementation is largely understudied. Our study presents evidence on their implementation costs in high-risk settings. This study aimed to estimate the economic costs of implementing Ag-RDT-based screening for SARS-CoV-2 in two tertiary care hospitals (University Hospital Heidelberg - UKHD, and Charité - Universitätsmedizin Berlin) and one nursing home in Germany. METHODS: We adopted a health system perspective and followed the three sequential steps to costing: identification of resources, measurement of resource consumption, and valuation of costs. Data on resource consumption were collected between October 2020 and April 2021 through various techniques and data sources. The cost estimation considered all costs along the screening algorithm including PCR confirmation tests for positive cases. We estimated the costs for the two implementation modalities observed: staff dedicated exclusively to screening and staff not dedicated exclusively to screening. Furthermore, cost estimations were performed under both observed capacity use and hypothetical capacity use assumptions (60, 80 and 100%). RESULTS: Our study indicates that the average cost per Ag-RDT is highly dependent on the capacity use and implementation mode. Staff time and test kits are the two main cost drivers of implementing the large-scale screening programs for SARS-CoV-2 using Ag-RDTs. For hospitals, the average cost per test in UKHD was €30.12 (capacity observed); €14.56 (non-dedicated mode); €19.47, €16.37, €14.53 at 60, 80, 100% capacity respectively (dedicated mode); and at Charité €13.10 (non-dedicated mode). For the nursing home the estimated average cost per test was €15.03 (non-dedicated mode). CONCLUSIONS: The information on the estimated costs by mode of implementation and capacity use may support the planning of Ag-RDT-based covid-19 screening programs suitable for each institution. Further research is needed to cost this screening strategy for COVID-19 in other high-risk, high-income settings to reach generalizability.

2.
Academy of Strategic Management Journal ; 20:1-8, 2021.
Article in English | ProQuest Central | ID: covidwho-1525173

ABSTRACT

Forecasting the reasonable scale of state budget collection is one of the important tasks in the administration of macroeconomic policy in general and budgetary financial policy in particular. In budget management, a reasonable scale of state budget collection is the basis for directing and administering budget management and at the same time a basis for researching and promulgating policies and directions for socio-economic development, especially in the context of the COVID-19 epidemic, which began to occur at the end of 2019 in China and the beginning of 2020 in Vietnam, caused difficulties and challenges for the world economy and society as well as in Vietnam. The current focus of Vietnam is to effectively implement the "dual goal" of preventing and fighting epidemics, protecting people's health, and recovering and developing social economics in a new normal state;completing the socioeconomic development and state budget estimation plans. The article uses the ARIMA method to forecast the ratio of state budget collection to GDP in Vietnam for the period of 2021-2025 and orientation to 2030, thereby giving some implications in forecasting Vietnamese state budget collection.

3.
Trials ; 22(1): 656, 2021 Sep 26.
Article in English | MEDLINE | ID: covidwho-1440949

ABSTRACT

BACKGROUND: To achieve higher effectiveness in population-based SARS-CoV-2 surveillance and to reliably predict the course of an outbreak, screening, and monitoring of infected individuals without major symptoms (about 40% of the population) will be necessary. While current testing capacities are also used to identify such asymptomatic cases, this rather passive approach is not suitable in generating reliable population-based estimates of the prevalence of asymptomatic carriers to allow any dependable predictions on the course of the pandemic. METHODS: This trial implements a two-factorial, randomized, controlled, multi-arm, prospective, interventional, single-blinded design with cluster sampling and four study arms, each representing a different SARS-CoV-2 testing and surveillance strategy based on individuals' self-collection of saliva samples which are then sent to and analyzed by a laboratory. The targeted sample size for the trial is 10,000 saliva samples equally allocated to the four study arms (2500 participants per arm). Strategies differ with respect to tested population groups (individuals vs. all household members) and testing approach (without vs. with pre-screening survey). The trial is complemented by an economic evaluation and qualitative assessment of user experiences. Primary outcomes include costs per completely screened person, costs per positive case, positive detection rate, and precision of positive detection rate. DISCUSSION: Systems for active surveillance of the general population will gain more importance in the context of pandemics and related disease prevention efforts. The pandemic parameters derived from such active surveillance with routine population monitoring therefore not only enable a prospective assessment of the short-term course of a pandemic, but also a more targeted and thus more effective use of local and short-term countermeasures. TRIAL REGISTRATION: ClinicalTrials.gov DRKS00023271 . Registered November 30, 2020, with the German Clinical Trials Register (Deutsches Register Klinischer Studien).


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Cost-Benefit Analysis , Humans , Population Groups , Prospective Studies , Randomized Controlled Trials as Topic , Treatment Outcome
4.
Trials ; 22(1): 39, 2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1440947

ABSTRACT

OBJECTIVES: In this cluster-randomised controlled study (CoV-Surv Study), four different "active" SARS-CoV-2 testing strategies for general population surveillance are evaluated for their effectiveness in determining and predicting the prevalence of SARS-CoV-2 infections in a given population. In addition, the costs and cost-effectiveness of the four surveillance strategies will be assessed. Further, this trial is supplemented by a qualitative component to determine the acceptability of each strategy. Findings will inform the choice of the most effective, acceptable and affordable strategy for SARS-CoV-2 surveillance, with the most effective and cost-effective strategy becoming part of the local public health department's current routine health surveillance activities. Investigating its everyday performance will allow us to examine the strategy's applicability to real time prevalence prediction and the usefulness of the resulting information for local policy makers to implement countermeasures that effectively prevent future nationwide lockdowns. The authors would like to emphasize the importance and relevance of this study and its expected findings in the context of population-based disease surveillance, especially in respect to the current SARS-CoV-2 pandemic. In Germany, but also in many other countries, COVID-19 surveillance has so far largely relied on passive surveillance strategies that identify individuals with clinical symptoms, monitor those cases who then tested positive for the virus, followed by tracing of individuals in close contact to those positive cases. To achieve higher effectiveness in population surveillance and to reliably predict the course of an outbreak, screening and monitoring of infected individuals without major symptoms (about 40% of the population) will be necessary. While current testing capacities are also used to identify such asymptomatic cases, this rather passive approach is not suitable in generating reliable population-based estimates of the prevalence of asymptomatic carriers to allow any dependable predictions on the course of the pandemic. To better control and manage the SARS-CoV-2 pandemic, current strategies therefore need to be complemented by an active surveillance of the wider population, i.e. routinely conducted testing and monitoring activities to identify and isolate infected individuals regardless of their clinical symptoms. Such active surveillance strategies will enable more effective prevention of the spread of the virus as they can generate more precise population-based parameters during a pandemic. This essential information will be required in order to determine the best strategic and targeted short-term countermeasures to limit infection spread locally. TRIAL DESIGN: This trial implements a cluster-randomised, two-factorial controlled, prospective, interventional, single-blinded design with four study arms, each representing a different SARS-CoV-2 testing and surveillance strategy. PARTICIPANTS: Eligible are individuals age 7 years or older living in Germany's Rhein-Neckar Region who consent to provide a saliva sample (all four arms) after completion of a brief questionnaire (two arms only). For the qualitative component, different samples of study participants and non-participants (i.e. eligible for study, but refuse to participate) will be identified for additional interviews. For these interviews, only individuals age 18 years or older are eligible. INTERVENTION AND COMPARATOR: Of the four surveillance strategies to be assessed and compared, Strategy A1 is considered the gold standard for prevalence estimation and used to determine bias in other arms. To determine the cost-effectiveness, each strategy is compared to status quo, defined as the currently practiced passive surveillance approach. Strategy A1: Individuals (one per household) receive information and study material by mail with instructions on how to produce a saliva sample and how to return the sample by mail. Once received by the laboratory, the sample is tested for SARS-CoV-2 using Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP). Strategy A2: Individuals (one per household) receive information and study material by mail with instructions on how to produce their own as well as saliva samples from each household member and how to return these samples by mail. Once received by the laboratory, the samples are tested for SARS-CoV-2 using RT-LAMP. Strategy B1: Individuals (one per household) receive information by mail on how to complete a brief pre-screening questionnaire which asks about COVID-19 related clinical symptoms and risk exposures. Only individuals whose pre-screening score crosses a defined threshold, will then receive additional study material by mail with instructions on how to produce a saliva sample and how to return the sample by mail. Once received by the laboratory, the saliva sample is tested for SARS-CoV-2 using RT-LAMP. Strategy B2: Individuals (one per household) receive information by mail on how to complete a brief pre-screening questionnaire which asks about COVID-19 related clinical symptoms. Only individuals whose pre-screening score crosses a defined threshold, will then receive additional study material by mail with instructions how to produce their own as well as saliva samples from each household member and how to return these samples by mail. Once received by the laboratory, the samples are tested for SARS-CoV-2 using RT-LAMP. In each strategy, RT-LAMP positive samples are additionally analyzed with qPCR in order to minimize the number of false positives. MAIN OUTCOMES: The identification of the one best strategy will be determined by a set of parameters. Primary outcomes include costs per correctly screened person, costs per positive case, positive detection rate, and precision of positive detection rate. Secondary outcomes include participation rate, costs per asymptomatic case, prevalence estimates, number of asymptomatic cases per study arm, ratio of symptomatic to asymptomatic cases per study arm, participant satisfaction. Additional study components (not part of the trial) include cost effectiveness of each of the four surveillance strategies compared to passive monitoring (i.e. status quo), development of a prognostic model to predict hospital utilization caused by SARS-CoV-2, time from test shipment to test application and time from test shipment to test result, and perception and preferences of the persons to be tested with regard to test strategies. RANDOMISATION: Samples are drawn in three batches of three continuous weeks. Randomisation follows a two-stage process. First, a total of 220 sampling points have been allocated to the three different batches. To obtain an integer solution, the Cox-algorithm for controlled rounding has been used. Afterwards, sample points have been drawn separately per batch, following a probability proportional to size (PPS) random sample. Second, for each cluster the same number of residential addresses is randomly sampled from the municipal registries (self-weighted sample of individuals). The 28,125 addresses drawn per municipality are then randomly allocated to the four study arms A1, A2, B1, and B2 in the ratio 5 to 2.5 to 14 to 7 based on the expected response rates in each arm and the sensitivity and specificity of the pre-screening tool as applied in strategy B1 and B2. Based on the assumptions, this allocation should yield 2500 saliva samples in each strategy. Although a municipality can be sampled by multiple batches and the overall number of addresses per municipality might vary, the number of addresses contacted in each arm is kept constant. BLINDING (MASKING): The design is single-blinded, meaning the staff conducting the SARS-CoV-2 tests are unaware of the study arm assignment of each single participant and test sample. SAMPLE SIZES: Total sample size for the trial is 10,000 saliva samples equally allocated to the four study arms (i.e. 2,500 participants per arm). For the qualitative component, up to 60 in-depth interviews will be conducted with about 30 study participants (up to 15 in each arm A and B) and 30 participation refusers (up to 15 in each arm A and B) purposefully selected from the quantitative study sample to represent a variety of gender and ages to explore experiences with admission or rejection of study participation. Up to 25 asymptomatic SARS-CoV-2 positive study participants will be purposefully selected to explore the way in which asymptomatic men and women diagnosed with SARS-CoV-2 give meaning to their diagnosis and to the dialectic between feeling concurrently healthy and yet also being at risk for transmitting COVID-19. In addition, 100 randomly selected study participants will be included to explore participants' perspective on testing processes and implementation. TRIAL STATUS: Final protocol version is "Surveillance_Studienprotokoll_03Nov2020_v1_2" from November 3, 2020. Recruitment started November 18, 2020 and is expected to end by or before December 31, 2020. TRIAL REGISTRATION: The trial is currently being registered with the German Clinical Trials Register (Deutsches Register Klinischer Studien), DRKS00023271 ( https://www.drks.de/drks_web/navigate.do?navigationId=trial . HTML&TRIAL_ID=DRKS00023271). Retrospectively registered 30 November 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19 Nucleic Acid Testing/economics , COVID-19/diagnosis , COVID-19/economics , Health Care Costs , Molecular Diagnostic Techniques/economics , Nucleic Acid Amplification Techniques/economics , SARS-CoV-2/genetics , Saliva/virology , Surveys and Questionnaires/economics , COVID-19/epidemiology , COVID-19/virology , Cost-Benefit Analysis , Female , Germany/epidemiology , Humans , Male , Population Surveillance , Predictive Value of Tests , Prevalence , Randomized Controlled Trials as Topic , Reproducibility of Results , Single-Blind Method
5.
The International Journal of Health Planning and Management ; n/a(n/a), 2021.
Article in English | Wiley | ID: covidwho-1409623

ABSTRACT

Abstract In responding to the COVID-19 pandemic, each country is presented with both opportunities and challenges, some unique and some shared with the global community. It is important to not only recognize, but to embrace them as drivers of the public to the current pandemic success. In this commentary, we discuss the opportunities and challenges that may affect ongoing public health programming in Australia within the current context of epidemiology. COVID-19 within Australia has to date been effectively suppressed through the implementation of nationally coordinated, in which the state delivered public policy, guidelines and practice, and successful establishment of a comprehensive testing, contact tracing, patient isolation and contact quarantine regime combined with national and state social distancing, hygiene etiquette and movement restrictions. However, despite its success to date great challenges lay ahead for future public health policy with the threat of a second wave, or more likely, multiple smaller outbreaks across various population centres. Therefore, policies that aim to balance the twin socioeconomic and health impacts are crucial. The experience of Australia in managing its COVID-19 response can provide a case study for other countries to reshape or adapt their policies and actions in the context of emerging global health crises.

SELECTION OF CITATIONS
SEARCH DETAIL