Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-321992

ABSTRACT

This paper reports the design, development, and testing of a novel, yet simple and low-cost portable device for the rapid detection of SARS-CoV-2. The device performs loop mediated isothermal amplification (LAMP) and provides visually distinguishable images of the fluorescence emitted from the samples. The device utilises an aluminium block embedded with a cartridge heater for isothermal heating of the sample and a single-board computer and camera for fluorescence detection. The device demonstrates promising results within 20 minutes using clinically relevant starting concentrations of the synthetic template. Time-to-signal data for this device are considerably lower compared to standard qPCR machine (~10-20 minutes vs >38 minutes) for 1×105 starting template copy number. The device in its fully optimized and characterized state can potentially be used as simple to operate, rapid, sensitive, and inexpensive platform for population screening as well as point-of-need SARS-CoV-2 detection and patient management.

2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313856

ABSTRACT

We report on an immunofluorescent paper-based assay for the detection of severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) humanized antibody. The paper-based device was fabricated by using lamination technique for easy and optimized handling. Our approach utilises a two-step strategy that involves (i) initial coating of the paper-electrode with recombinant SARS-CoV-2 nucleocapsid antigen to capture the target SARS-CoV-2 specific antibodies, and (ii) subsequent detection of SARS-CoV-2 antibodies using fluorophore-conjugated IgG antibody. The fluorescence readout was observed with fluorescence microscopy. The images were processed and quantified using a MATLAB program. The assay can selectively detect SARS-CoV-2 humanized antibodies spiked in PBS and healthy human serum samples with the relative standard deviation of approximately 6.4% (for n = 3). It has broad dynamic ranges (1 ng to 50 ng/µL in PBS and 5 to 100 ng/µL in human serum samples) for SARS-CoV-2 humanized antibodies with the detection limits of 2 ng/µL (0.025 IU/mL) and 10 ng/µL (0.125 IU/mL) in PBS and human serum samples, respectively. We believe that our assay has the potential to be used as a simple, rapid, and inexpensive paper-based diagnostic device with a portable fluorescent reader to provide point-of-care diagnosis. This assay can be used for rapid examination of a large batch of samples toward clinical screening of SARS-CoV-2 specific antibodies as a confirmed infected active case or to evaluate the immune response to a SARS-CoV-2 vaccine.

3.
Micromachines (Basel) ; 12(12)2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1596334

ABSTRACT

Micromachines has achieved a major milestone this year [...].

4.
Micromachines (Basel) ; 12(10)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1438668

ABSTRACT

This paper reports the design, development, and testing of a novel, yet simple and low-cost portable device for the rapid detection of SARS-CoV-2. The device performs loop mediated isothermal amplification (LAMP) and provides visually distinguishable images of the fluorescence emitted from the samples. The device utilises an aluminium block embedded with a cartridge heater for isothermal heating of the sample and a single-board computer and camera for fluorescence detection. The device demonstrates promising results within 20 min using clinically relevant starting concentrations of the synthetic template. Time-to-signal data for this device are considerably lower compared to standard quantitative Polymerase Chain Reaction(qPCR) machine (~10-20 min vs. >38 min) for 1 × 102 starting template copy number. The device in its fully optimized and characterized state can potentially be used as simple to operate, rapid, sensitive, and inexpensive platform for population screening as well as point-of-need severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) detection and patient management.

5.
Analyst ; 145(23): 7680-7686, 2020 Nov 23.
Article in English | MEDLINE | ID: covidwho-798256

ABSTRACT

This work reports the development of a rapid, simple and inexpensive colorimetric paper-based assay for the detection of the severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) humanized antibody. The paper device was prepared with lamination for easy sample handling and coated with the recombinant SARS-CoV-2 nucleocapsid antigen. This assay employed a colorimetric reaction, which is followed by horseradish peroxidase (HRP) conjugated detecting antibody in the presence of the 3,3',5,5'-tetramethylbenzidine (TMB) substrate. The colorimetric readout was evaluated and quantified for specificity and sensitivity. The characterization of this assay includes determining the linear regression curve, the limit of detection (LOD), the repeatability, and testing complex biological samples. We found that the LOD of the assay was 9.00 ng µL-1 (0.112 IU mL-1). The relative standard deviation was approximately 10% for a sample number of n = 3. We believe that our proof-of-concept assay has the potential to be developed for clinical screening of the SARS-CoV-2 humanized antibody as a tool to confirm infected active cases or to confirm SARS-CoV-2 immune cases during the process of vaccine development.


Subject(s)
Antibodies, Monoclonal, Humanized/blood , Antibodies, Viral/blood , COVID-19 Testing/methods , Colorimetry/methods , Enzyme-Linked Immunosorbent Assay/methods , Paper , SARS-CoV-2/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , Armoracia/enzymology , Benzidines/chemistry , COVID-19/diagnosis , COVID-19 Testing/instrumentation , Colorimetry/instrumentation , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay/instrumentation , Horseradish Peroxidase/chemistry , Humans , Limit of Detection , Phosphoproteins/immunology , Proof of Concept Study , SARS-CoV-2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL