Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nature ; 583(7818): 834-838, 2020 07.
Article in English | MEDLINE | ID: covidwho-261141

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6-7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Lung/virology , Mesocricetus/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Aerosols , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , Coronavirus Infections/immunology , Duodenum/virology , Fomites/virology , Housing, Animal , Kidney/virology , Male , Mesocricetus/immunology , Nasal Mucosa/virology , Pandemics , Pneumonia, Viral/immunology , RNA, Viral/analysis , Viral Load , Weight Loss
2.
Lancet Respir Med ; 8(7): 687-695, 2020 07.
Article in English | MEDLINE | ID: covidwho-197584

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019, causing a respiratory disease (coronavirus disease 2019, COVID-19) of varying severity in Wuhan, China, and subsequently leading to a pandemic. The transmissibility and pathogenesis of SARS-CoV-2 remain poorly understood. We evaluate its tissue and cellular tropism in human respiratory tract, conjunctiva, and innate immune responses in comparison with other coronavirus and influenza virus to provide insights into COVID-19 pathogenesis. METHODS: We isolated SARS-CoV-2 from a patient with confirmed COVID-19, and compared virus tropism and replication competence with SARS-CoV, Middle East respiratory syndrome-associated coronavirus (MERS-CoV), and 2009 pandemic influenza H1N1 (H1N1pdm) in ex-vivo cultures of human bronchus (n=5) and lung (n=4). We assessed extrapulmonary infection using ex-vivo cultures of human conjunctiva (n=3) and in-vitro cultures of human colorectal adenocarcinoma cell lines. Innate immune responses and angiotensin-converting enzyme 2 expression were investigated in human alveolar epithelial cells and macrophages. In-vitro studies included the highly pathogenic avian influenza H5N1 virus (H5N1) and mock-infected cells as controls. FINDINGS: SARS-CoV-2 infected ciliated, mucus-secreting, and club cells of bronchial epithelium, type 1 pneumocytes in the lung, and the conjunctival mucosa. In the bronchus, SARS-CoV-2 replication competence was similar to MERS-CoV, and higher than SARS-CoV, but lower than H1N1pdm. In the lung, SARS-CoV-2 replication was similar to SARS-CoV and H1N1pdm, but was lower than MERS-CoV. In conjunctiva, SARS-CoV-2 replication was greater than SARS-CoV. SARS-CoV-2 was a less potent inducer of proinflammatory cytokines than H5N1, H1N1pdm, or MERS-CoV. INTERPRETATION: The conjunctival epithelium and conducting airways appear to be potential portals of infection for SARS-CoV-2. Both SARS-CoV and SARS-CoV-2 replicated similarly in the alveolar epithelium; SARS-CoV-2 replicated more extensively in the bronchus than SARS-CoV. These findings provide important insights into the transmissibility and pathogenesis of SARS-CoV-2 infection and differences with other respiratory pathogens. FUNDING: US National Institute of Allergy and Infectious Diseases, University Grants Committee of Hong Kong Special Administrative Region, China; Health and Medical Research Fund, Food and Health Bureau, Government of Hong Kong Special Administrative Region, China.


Subject(s)
Betacoronavirus/immunology , Conjunctiva/virology , Coronavirus Infections/immunology , Immunity, Innate/immunology , Pneumonia, Viral/immunology , Respiratory System/virology , Viral Tropism/physiology , Virus Replication/physiology , Adult , Aged , Aged, 80 and over , Betacoronavirus/physiology , Conjunctiva/immunology , Conjunctiva/physiopathology , Coronavirus Infections/physiopathology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/physiopathology , Respiratory Mucosa/immunology , Respiratory Mucosa/physiopathology , Respiratory Mucosa/virology , Respiratory System/immunology , Respiratory System/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL