Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
MedComm (2020) ; 3(2): e130, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1782644

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, particularly those with multiple mutations in receptor-binding domain (RBD), pose a critical challenge to the efficacy of coronavirus disease 2019 (COVID-19) vaccines and therapeutic neutralizing monoclonal antibodies (mAbs). Omicron sublineages BA.1, BA.2, BA.3, as well as the recent emergence of C.1.2, B.1.630, B.1.640.1, and B.1.640.2, have multiple mutations in RBD and may lead to severe neutralizing antibody evasion. It is urgent to evaluate the antigenic change of the above seven variants against mAbs and sera from guinea pigs immunized with variants of concern (VOCs) (Alpha, Beta, Gamma, Delta, Omicron) and variants of interest (VOIs) (Lambda, Mu) immunogens. Only seven out of the 24 mAbs showed no reduction in neutralizing activity against BA.1, BA.2, and BA.3. However, among these seven mAbs, the neutralization activity of XGv337 and XGv338 against C.1.2, B.1.630, B.1.640.1, and B.1.640.2 were decreased. Therefore, only five neutralizing mAbs showed no significant change against these seven variants. Using VOCs and VOIs as immunogens, we found that the antigenicity of variants could be divided into three clusters, and each cluster showed similar antigenicity to different immunogens. Among them, D614G, B.1.640.1, and B.1.630 formed a cluster, C.1.2 and B.1.640.2 formed a cluster, and BA.1, BA.2, and BA.3 formed a cluster.

2.
Journal of Medical Virology ; 94(5):i-i, 2022.
Article in English | Wiley | ID: covidwho-1750403

ABSTRACT

Front Cover Caption: The cover image is based on the Research Article Aggregation of high-frequency RBD mutations of SARS-CoV-2 with three VOCs did not cause significant antigenic drift by Tao Li et al., https://doi.org/10.1002/jmv.27596.

3.
Emerg Microbes Infect ; 11(1): 1024-1036, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1740712

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic. B.1.617 variants (including Kappa and Delta) have been transmitted rapidly in India. The transmissibility, pathogenicity, and neutralization characteristics of these variants have received considerable interest. In this study, 22 pseudotyped viruses were constructed for B.1.617 variants and their corresponding single amino acid mutations. B.1.617 variants did not exhibit significant enhanced infectivity in human cells, but mutations T478K and E484Q in the receptor binding domain led to enhanced infectivity in mouse ACE2-overexpressing cells. Furin activities were slightly increased against B.1.617 variants and cell-cell fusion after infection of B.1.617 variants were enhanced. Furthermore, B.1.617 variants escaped neutralization by several mAbs, mainly because of mutations L452R, T478K, and E484Q in the receptor binding domain. The neutralization activities of sera from convalescent patients, inactivated vaccine-immunized volunteers, adenovirus vaccine-immunized volunteers, and SARS-CoV-2 immunized animals against pseudotyped B.1.617 variants were reduced by approximately twofold, compared with the D614G variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Cell Fusion , Humans , Mice , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Viral Tropism
4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-317971

ABSTRACT

Jianhui Nie, Qianqian Li, and Jiajing Wu contributed equally to this work. Pseudotyped viruses are useful virological tools due to their safety and versatility. Based on a VSV pseudotyped virus production system, we developed a pseudotyped virus-based neutralization assay against SARS-CoV-2 in biosafety level 2 facilities. This protocol includes production, titration of the SARS-CoV-2 S pseudotyped virus and neutralization assay based on it. Various types of samples targeting virus attachment and entry could be evaluated for their potency, including serum samples derived from animals and humans, monoclonal antibodies, fusion inhibitors (peptides or small molecules). If the pseudotyped virus stock has been prepared in advance, it will take 2 days to get the potency data for the candidate samples. Experience of handling cells is needed before implementing this protocol.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-312737

ABSTRACT

The SARS-CoV-2 virus has had a major impact on global human health. During the spread of SARS-CoV-2, weakened host immunity and the use of vaccines with low efficacy may result in the development of more virulent strains or strains with resistance to existing vaccines and antibodies. The prevalence of SARS-CoV-2 mutant strains differs among regions, and this variation may affect the effectiveness of vaccines. In this study, an epidemiological investigation of SARS-CoV-2 in Portugal was performed, and the VSV-ΔG-G* pseudovirus system was used to construct 12 S protein epidemic mutants, D614G, A222V+D614G, B.1.1.7, S477N+D614G, P1162R+D614G+A222V, D839Y+D614G, L176F+D614G, B.1.1.7+L216F, B.1.1.7+M740V, B.1.258, B.1.258+L1063F, and B.1.258+N751Y.The mutant pseudoviruses were used to infect four susceptible cell lines (i.e., Huh7, hACE2-293T, Vero, and LLC-MK2) and 14 cell lines overexpressing ACE2 from different species. Mutant strains did not show increased infectivity or cross-species transmission. Neutralization activity was evaluated using the newly constructed pseudoviruses, mouse serum, and 11 monoclonal antibodies. The neutralizing activity in immunized mouse serum was not significantly reduced for the mutant strains. Additionally, mutant strains in Portugal showed escape from 9 of 11 monoclonal antibodies. Neutralization resistance was mainly caused by the S477N, N439K, and N501Y mutations in the Spike receptor binding domain. These findings emphasize the importance of SARS-CoV-2 mutation tracking in different regions for epidemic prevention and control.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-308922

ABSTRACT

COVID-19 has spread worldwide. However, SARS-CoV-2 serological markers, which usually important indicators of disease progression, remains to be studied. To determine serological patterns during infection and their corresponding influencing factors, we conducted a cohort study including 115 patients with COVID-19 from 41 hospitals. The study included measuring IgM, IgG, and neutralizing antibodies (NAb) in serum, conducting epidemiological survey of the subjects, and retrieving clinical indicators from electronic medical records. We found NAb had the highest seroconversion rate (79.61%), followed by IgG (60.42%), and IgM (26.56%). Seroconversion rate peaked 20–40 d post-infection with NAb reaching 100%. The Geometric mean of NAb ID 50 is 201 (30 to 6271). The NAb titer was positively correlated with duration of infection (p = 0), IgM (p = 0.016), and IgG (p = 0). Compared with IgM or IgG, NAb has better diagnostic sensitivity and serological patterns are valuable for clinical diagnosis and disease monitoring.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-325079

ABSTRACT

Ten emerging SARS-CoV-2 variants—B.1.1.298, B.1.1.7, B.1.351, P.1, P.2, B.1.429, B.1.525, B.1.526-1, B.1.526-2, B.1.1.318—and seven corresponding single amino acid mutations in the receptor-binding domain were examined using SARS-CoV-2 pseudovirus. The results indicate that the current SARS-CoV-2 variants do not increase infectivity among humans. The K417N/T, N501Y, or E484K-carrying variants exhibited increased abilities to infect to mouse ACE2-overexpressing cells. The activities of Furin, TMPRSS2, and cathepsin L were increased against most of the variants. RBD amino acid mutations comprising K417T/N, L452R, Y453F, S477N, E484K, and N501Y caused significant immune escape from 11 of 13 monoclonal antibodies. However, the resistance to neutralization by convalescent serum or vaccines was mainly caused by the E484K mutation, while the neutralization of E484K-carrying variants was decreased by 1.1–6.2-fold. The convalescent serum from B.1.1.7- and B.1.351-infected patients neutralized the variants themselves better than other SARS-CoV-2 variants.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323773

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic. Recently, B.1.617 variants have been transmitted rapidly in India. The transmissibility, pathogenicity, and neutralization characteristics of these variants have received considerable interest. In this study, 22 pseudotyped viruses were constructed for B.1.617 variants and their corresponding single amino acid mutations. B.1.617 variants did not exhibit significant enhanced infectivity in human cells, but mutations T478K and E484Q in the receptor binding domain led to enhanced infectivity in mouse ACE2-overexpressing cells. Furin activities were slightly increased against B.1.617 variants and cell–cell fusion after infection of B.1.617 variants was enhanced. Furthermore, B.1.617 variants escaped neutralization by several mAbs, mainly because of mutations L452R, T478K, and E484Q in the receptor binding domain. The neutralization activities of sera from convalescent patients, inactivated vaccine-immunized volunteers, adenovirus vaccine-immunized volunteers, and SARS-CoV-2 immunized animals against pseudotyped B.1.617 variants were reduced by approximately twofold, compared with the D614G variant.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323767

ABSTRACT

The SARS-CoV-2 variant VUI/202012/01 has been reported to spread unexpectedly fast in the United Kingdom. It is estimated that its transmissibility may increase by 70%. In this study, the top five variants circulating in the UK including D614G+L18F+A222V, D614G+A222V, D614G+S477N, VUI/202012/01 and D614G+69-70del+439K were analyzed for their infective and neutralizing characteristics. The pseudotyped viruses were constructed for the five variants and 12 single mutants composed those variants. We found that the VUI/202012/01 variant does enhance its infectivity due to the cumulative effect of multiple mutations including 69-70del and 144/145del mutations in NTD, A570D in RBD, and S982A in S2. Meanwhile, mutations N501Y, N439K and S477N in RBD can cause a significant decrease in the neutralization activity for some mAbs. Although VUI/202012/01 did not affect the neutralization effect of convalescent sera, it affected the neutralization activity of animal immunized sera by RBD protein or recombinant spike DNA to some extent.

10.
Arch Virol ; 167(2): 459-470, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653515

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a major impact on global human health. During the spread of SARS-CoV-2, weakened host immunity and the use of vaccines with low efficacy may result in the development of more-virulent strains or strains with resistance to existing vaccines and antibodies. The prevalence of SARS-CoV-2 mutant strains differs between regions, and this variation may have an impact on the effectiveness of vaccines. In this study, an epidemiological investigation of SARS-CoV-2 in Portugal was performed, and the VSV-ΔG-G* pseudovirus system was used to construct 12 spike protein epidemic mutants, D614G, A222V+D614G, B.1.1.7, S477N+D614G, P1162R+D614G+A222V, D839Y+D614G, L176F+D614G, B.1.1.7+L216F, B.1.1.7+M740V, B.1.258, B.1.258+L1063F, and B.1.258+N751Y. The mutant pseudoviruses were used to infect four susceptible cell lines (Huh7, hACE2-293T-293T, Vero, and LLC-MK2) and 14 cell lines overexpressing ACE2 from different species. Mutant strains did not show increased infectivity or cross-species transmission. Neutralization activity against these pseudoviruses was evaluated using mouse serum and 11 monoclonal antibodies. The neutralizing activity of immunized mouse serum was not significantly reduced with the mutant strains, but the mutant strains from Portugal could evade nine of the 11 monoclonal antibodies tested. Neutralization resistance was mainly caused by the mutations S477N, N439K, and N501Y in the spike-receptor binding domain. These findings emphasize the importance of SARS-CoV-2 mutation tracking in different regions for epidemic prevention and control.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Humans , Mice , Mutation , Portugal/epidemiology , Spike Glycoprotein, Coronavirus/genetics
11.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
12.
J Med Virol ; 94(5): 2108-2125, 2022 05.
Article in English | MEDLINE | ID: covidwho-1627779

ABSTRACT

Variants of SARS-CoV-2 continue to emerge, posing great challenges in outbreak prevention and control. It is important to understand in advance the impact of possible variants of concern (VOCs) on infectivity and antigenicity. Here, we constructed one or more of the 15 high-frequency naturally occurring amino acid changes in the receptor-binding domain (RBD) of Alpha, Beta, and Gamma variants. A single mutant of A520S, V367F, and S494P in the above three VOCs enhanced infectivity in ACE2-overexpressing 293T cells of different species, LLC-MK2 and Vero cells. Aggregation of multiple RBD mutations significantly reduces the infectivity of the possible three VOCs. Regarding neutralization, it is noteworthy that E484K, N501Y, K417N, and N439K predispose to monoclonal antibodies (mAbs) protection failure in the 15 high-frequency mutations. Most importantly, almost all possible VOCs (single RBD mutation or aggregation of multiple mutations) showed no more than a fourfold decrease in neutralizing activity with convalescent sera, vaccine sera, and immune sera of guinea pigs with different immunogens, and no significant antigenic drift was formed. In conclusion, our pseudovirus results could reduce the concern that the aggregation of multiple high-frequency mutations in the RBD of the spike protein of the three VOCs would lead to severe antigenic drift, and this would provide value for vaccine development strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , COVID-19/therapy , Chlorocebus aethiops , Guinea Pigs , Humans , Immunization, Passive , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vero Cells
13.
Emerg Microbes Infect ; 11(1): 1-5, 2022 12.
Article in English | MEDLINE | ID: covidwho-1565887

ABSTRACT

The emergence of Omicron/BA.1 has brought new challenges to fight against SARS-CoV-2. A large number of mutations in the Spike protein suggest that its susceptibility to immune protection elicited by the existing COVID-19 infection and vaccines may be altered. In this study, we constructed the pseudotyped SARS-CoV-2 variant Omicron. The sensitivity of 28 serum samples from COVID-19 convalescent patients infected with SARS-CoV-2 original strain was tested against pseudotyped Omicron as well as the other variants of concern (VOCs, Alpha, Beta, Gamma, Delta) and variants of interest (VOIs, Lambda, Mu). Our results indicated that the mean neutralization ED50 of these sera against Omicron decreased to 66, which is about 8.4-folds compared to the D614G reference strain (ED50 = 556), whereas the neutralization activity of other VOC and VOI pseudotyped viruses decreased only about 1.2-4.5-folds. The finding from our in vitro assay suggest that Omicron variant may lead to more significant escape from immune protection elicited by previous SARS-CoV-2 infection and perhaps even by existing COVID-19 vaccines.


Subject(s)
COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Immune Evasion , SARS-CoV-2/immunology , Humans , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
14.
Emerg Microbes Infect ; 11(1): 182-194, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1550502

ABSTRACT

The ubiquitously-expressed proteolytic enzyme furin is closely related to the pathogenesis of SARS-CoV-2 and therefore represents a key target for antiviral therapy. Based on bioinformatic analysis and pseudovirus tests, we discovered a second functional furin site located in the spike protein. Furin still increased the infectivity of mutated SARS-CoV-2 pseudovirus in 293T-ACE2 cells when the canonical polybasic cleavage site (682-686) was deleted. However, K814A mutation eliminated the enhancing effect of furin on virus infection. Furin inhibitor prevented infection by 682-686-deleted SARS-CoV-2 in 293T-ACE2-furin cells, but not the K814A mutant. K814A mutation did not affect the activity of TMPRSS2 and cathepsin L but did impact the cleavage of S2 into S2' and cell-cell fusion. Additionally, we showed that this functional furin site exists in RaTG13 from bat and PCoV-GD/GX from pangolin. Therefore, we discovered a new functional furin site that is pivotal in promoting SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Cathepsin L/metabolism , Furin/metabolism , SARS-CoV-2/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/genetics , Animals , Cathepsin L/genetics , Cell Fusion , Chiroptera , Furin/genetics , Gene Expression , HEK293 Cells , Humans , Mice , Mice, Transgenic , Mutation , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/metabolism
15.
Emerg Microbes Infect ; 11(1): 18-29, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1532383

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 variants have continued to emerge in diverse geographic locations with a temporal distribution. The Lambda variant containing multiple mutations in the spike protein, has thus far appeared mainly in South America. The variant harbours two mutations in the receptor binding domain, L452Q and F490S, which may change its infectivity and antigenicity to neutralizing antibodies. In this study, we constructed 10 pseudoviruses to study the Lambda variant and each individual amino acid mutation's effect on viral function, and used eight cell lines to study variant infectivity. In total, 12 monoclonal antibodies, 14 convalescent sera, and 23 immunized sera induced by mRNA vaccines, inactivated vaccine, and adenovirus type 5 vector vaccine were used to study the antigenicity of the Lambda variant. We found that compared with the D614G reference strain, Lambda demonstrated enhanced infectivity of Calu-3 and LLC-MK2 cells by 3.3-fold and 1.6-fold, respectively. Notably, the sensitivity of the Lambda variant to 5 of 12 neutralizing monoclonal antibodies, 9G11, AM180, R126, X593, and AbG3, was substantially diminished. Furthermore, convalescent- and vaccine-immunized sera showed on average 1.3-2.5-fold lower neutralizing titres against the Lambda variant. Single mutation analysis revealed that this reduction in neutralization was caused by L452Q and F490S mutations. Collectively, the reduced neutralization ability of the Lambda variant suggests that the efficacy of monoclonal antibodies and vaccines may be compromised during the current pandemic.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Binding Sites , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Cell Line , Host-Pathogen Interactions , Humans , Immune Sera , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Structure-Activity Relationship
16.
Commun Biol ; 4(1): 1196, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1467140

ABSTRACT

Emerging mutations in SARS-CoV-2 cause several waves of COVID-19 pandemic. Here we investigate the infectivity and antigenicity of ten emerging SARS-CoV-2 variants-B.1.1.298, B.1.1.7(Alpha), B.1.351(Beta), P.1(Gamma), P.2(Zeta), B.1.429(Epsilon), B.1.525(Eta), B.1.526-1(Iota), B.1.526-2(Iota), B.1.1.318-and seven corresponding single amino acid mutations in the receptor-binding domain using SARS-CoV-2 pseudovirus. The results indicate that the pseudovirus of most of the SARS-CoV-2 variants (except B.1.1.298) display slightly increased infectivity in human and monkey cell lines, especially B.1.351, B.1.525 and B.1.526 in Calu-3 cells. The K417N/T, N501Y, or E484K-carrying variants exhibit significantly increased abilities to infect mouse ACE2-overexpressing cells. The activities of furin, TMPRSS2, and cathepsin L are increased against most of the variants. RBD amino acid mutations comprising K417T/N, L452R, Y453F, S477N, E484K, and N501Y cause significant immune escape from 11 of 13 monoclonal antibodies. However, the resistance to neutralization by convalescent serum or vaccines elicited serum is mainly caused by the E484K mutation. The convalescent serum from B.1.1.7- and B.1.351-infected patients neutralized the variants themselves better than other SARS-CoV-2 variants. Our study provides insights regarding therapeutic antibodies and vaccines, and highlights the importance of E484K mutation.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/therapy , Cell Line , HEK293 Cells , Humans , Immunization, Passive/methods , Mammals/immunology , Mice , Mutation , Pandemics , Primates/immunology , Protein Binding , Tropism/genetics
17.
18.
Vaccine ; 39(41): 6050-6056, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1386708

ABSTRACT

The development of an effective vaccine to control the global coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus- 2 (SARS-CoV-2) is of utmost importance. In this study, a synthetic DNA-based vaccine candidate, known as pSV10-SARS-CoV-2, expressing the SARS-CoV-2 spike protein was designed and tested in 39 BALB/c mice with BC01, an adjuvant derived from unmethylated CpG motif-containing DNA fragments from the Bacillus Calmette-Guerin genome. Mice vaccinated with pSV10-SARS-CoV-2 with BC01 produced early neutralizing antibodies and developed stronger humoral and cellular immune responses compared to mice that received the DNA vaccine only. Moreover, sera from mice vaccinated with pSV10-SARS-CoV-2 with BC01 can neutralize certain variants, including 614G, 614G + 472 V, 452R, 483A, 501Y.V2, and B.1.1.7. The results of this study demonstrate that the addition of BC01 to a DNA-vaccine for COVID-19 could elicit more effective neutralizing antibody titers for disease prevention.


Subject(s)
COVID-19 , Vaccines, DNA , Animals , Antibodies, Neutralizing , Antibodies, Viral , BCG Vaccine , COVID-19 Vaccines , DNA , Genomics , Humans , Immunity, Cellular , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
19.
Journal of Applied Virology ; 9(4):41-45, 2020.
Article in English | GIM | ID: covidwho-1344634

ABSTRACT

The dominant N501Y mutation in the spike protein that SARS-CoV-2 virus uses to bind to the human ACE2 receptor were found in the UK, which has aroused global concern and worried. Mutations in spike protein may, in theory, result in more infectious and spreading more easily. In order to evaluate the broad-spectrum protective effect of the monoclonal antibodies(mAbs), we compared the neutralization activities of six prepared mAbs against SARS-CoV-2 with pseudovirus neutralization assay. Only one of them showed a decrease of 6 folds in neutralizing activity to N501Y mutant strain, compared with the wild type strain. We should continue to monitor emergence of new variants in different regions to study their infectivity and neutralization effect.

20.
Cell Discov ; 7(1): 53, 2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1319024

ABSTRACT

Coronavirus disease 2019 (COVID-19), a pandemic disease caused by the newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused more than 3.8 million deaths to date. Neutralizing antibodies are effective therapeutic measures. However, many naturally occurring mutations at the receptor-binding domain (RBD) have emerged, and some of them can evade existing neutralizing antibodies. Here, we utilized RenMab, a novel mouse carrying the entire human antibody variable region, for neutralizing antibody discovery. We obtained several potent RBD-blocking antibodies and categorized them into four distinct groups by epitope mapping. We determined the involved residues of the epitope of three representative antibodies by cryo-electron microscopy (Cryo-EM) studies. Moreover, we performed neutralizing experiments with 50 variant strains with single or combined mutations and found that the mixing of three epitope-distinct antibodies almost eliminated the mutant escape. Our study provides a sound basis for the rational design of fully human antibody cocktails against SARS-CoV-2 and pre-emergent coronaviral threats.

SELECTION OF CITATIONS
SEARCH DETAIL