Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-336215

ABSTRACT

Ethnic differences in the risk of severe COVID-19 may be linked to household composition. We quantified the association between household composition and risk of severe COVID-19 by ethnicity for older individuals. With the approval of NHS England, we analysed ethnic differences in the association between household composition and severe COVID-19 in people aged 67 or over in England. We defined households by number of generations living together, and used multivariable Cox regression stratified by location and wave of the pandemic and accounted for age, sex, comorbidities, smoking, obesity, housing density and deprivation. We included 2 692 223 people over 67 years in wave 1 (01/02/2020-31/08/2020) and 2 731 427 in wave 2 (01/09/2020-31/01/2021). Multigenerational living was associated with increased risk of severe COVID-19 for White and South Asian older people in both waves (e.g. wave 2, 67+ living with 3 other generations vs 67+ year olds only: White HR 1·61 95% CI 1·38-1·87, South Asian HR 1·76 95% CI 1·48-2·10), with a trend for increased risks of severe COVID-19 with increasing generations in wave 2. Multigenerational living was associated with severe COVID-19 in older adults. Older South Asian people are over-represented within multigenerational households in England, especially in the most deprived settings. The number of generations in a household, number of occupants, ethnicity and deprivation status are important considerations in the continued roll-out of COVID-19 vaccination and targeting of interventions for future pandemics. Funding This research was funded in part, by the Wellcome Trust. For the purpose of open access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335343

ABSTRACT

Background: Patients surviving hospitalisation for COVID-19 are thought to be at high risk of cardiometabolic and pulmonary complications, but quantification of that risk is limited. We aimed to describe the overall burden of these complications in people after discharge from hospital with COVID-19.   Methods: :  Working on behalf of NHS England, we used linked primary care records, death certificate and hospital data from the OpenSAFELY platform. We constructed three cohorts: patients discharged following hospitalisation with COVID-19, patients discharged following pre-pandemic hospitalisation with pneumonia, and a frequency-matched cohort from the general population in 2019. We studied seven outcomes: deep vein thrombosis (DVT), pulmonary embolism (PE), ischaemic stroke, myocardial infarction (MI), heart failure, AKI and new type 2 diabetes mellitus (T2DM) diagnosis. Absolute rates were measured in each cohort and Fine and Gray models were used to estimate age/sex adjusted subdistribution hazard ratios comparing outcome risk between discharged COVID-19 patients and the two comparator cohorts. Results: :  Amongst the population of 77,347 patients discharged following hospitalisation with COVID-19, rates for the majority of outcomes peaked in the first month post-discharge, then declined over the following four months. Patients in the COVID-19 population had markedly higher risk of all outcomes compared to matched controls from the 2019 general population. Across the whole study period, the risk of outcomes was more similar when comparing patients discharged with COVID-19 to those discharged with pneumonia in 2019, although COVID-19 patients had higher risk of T2DM (15.2 versus 37.2 [rate per 1,000-person-years for COVID-19 versus pneumonia, respectively];SHR, 1.46 [95% CI: 1.31 - 1.63]).  Conclusions: :  Risk of cardiometabolic and pulmonary adverse outcomes is markedly raised following discharge from hospitalisation with COVID-19 compared to the general population. However, excess risks were similar to those seen following discharge post-pneumonia. Overall, this suggests a large additional burden on healthcare resources.

4.
BMC Public Health ; 22(1): 716, 2022 04 11.
Article in English | MEDLINE | ID: covidwho-1785149

ABSTRACT

BACKGROUND: The COVID-19 epidemic has differentially impacted communities across England, with regional variation in rates of confirmed cases, hospitalisations and deaths. Measurement of this burden changed substantially over the first months, as surveillance was expanded to accommodate the escalating epidemic. Laboratory confirmation was initially restricted to clinical need ("pillar 1") before expanding to community-wide symptomatics ("pillar 2"). This study aimed to ascertain whether inconsistent measurement of case data resulting from varying testing coverage could be reconciled by drawing inference from COVID-19-related deaths. METHODS: We fit a Bayesian spatio-temporal model to weekly COVID-19-related deaths per local authority (LTLA) throughout the first wave (1 January 2020-30 June 2020), adjusting for the local epidemic timing and the age, deprivation and ethnic composition of its population. We combined predictions from this model with case data under community-wide, symptomatic testing and infection prevalence estimates from the ONS infection survey, to infer the likely trajectory of infections implied by the deaths in each LTLA. RESULTS: A model including temporally- and spatially-correlated random effects was found to best accommodate the observed variation in COVID-19-related deaths, after accounting for local population characteristics. Predicted case counts under community-wide symptomatic testing suggest a total of 275,000-420,000 cases over the first wave - a median of over 100,000 additional to the total confirmed in practice under varying testing coverage. This translates to a peak incidence of around 200,000 total infections per week across England. The extent to which estimated total infections are reflected in confirmed case counts was found to vary substantially across LTLAs, ranging from 7% in Leicester to 96% in Gloucester with a median of 23%. CONCLUSIONS: Limitations in testing capacity biased the observed trajectory of COVID-19 infections throughout the first wave. Basing inference on COVID-19-related mortality and higher-coverage testing later in the time period, we could explore the extent of this bias more explicitly. Evidence points towards substantial under-representation of initial growth and peak magnitude of infections nationally, to which different parts of the country contribute unequally.


Subject(s)
COVID-19 , Bayes Theorem , COVID-19/epidemiology , Cost of Illness , Humans , Information Storage and Retrieval , SARS-CoV-2
5.
Lancet Reg Health Eur ; 14: 100295, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1747703

ABSTRACT

BACKGROUND: Residents in care homes have been severely impacted by COVID-19. We describe trends in the mortality risk among residents of care homes compared to private homes. METHODS: On behalf of NHS England we used OpenSAFELY-TPP to calculate monthly age-standardised risks of death due to all causes and COVID-19 among adults aged >=65 years between 1/2/2019 and 31/03/2021. Care home residents were identified using linkage to Care and Quality Commission data. FINDINGS: We included 4,340,648 people aged 65 years or older on the 1st of February 2019, 2.2% of whom were classified as residing in a care or nursing home. Age-standardised mortality risks were approximately 10 times higher among care home residents compared to those in private housing in February 2019: comparative mortality figure (CMF) = 10.59 (95%CI = 9.51, 11.81) among women, and 10.87 (9.93, 11.90) among men. By April 2020 these relative differences had increased to more than 17 times with CMFs of 17.57 (16.43, 18.79) among women and 18.17 (17.22, 19.17) among men. CMFs did not increase during the second wave, despite a rise in the absolute age-standardised COVID-19 mortality risks. INTERPRETATION: COVID-19 has had a disproportionate impact on the mortality of care home residents in England compared to older residents of private homes, but only in the first wave. This may be explained by a degree of acquired immunity, improved protective measures or changes in the underlying frailty of the populations. The care home population should be prioritised for measures aimed at controlling COVID-19. FUNDING: Medical Research Council MR/V015737/1.

6.
Clin Infect Dis ; 2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1706197

ABSTRACT

BACKGROUND: The SARS-CoV-2 alpha variant (B.1.1.7) is associated with higher transmissibility than wild type virus, becoming the dominant variant in England by January 2021. We aimed to describe the severity of the alpha variant in terms of the pathway of disease from testing positive to hospital admission and death. METHODS: With the approval of NHS England, we linked individual-level data from primary care with SARS-CoV-2 community testing, hospital admission, and ONS all-cause death data. We used testing data with S-gene target failure as a proxy for distinguishing alpha and wild-type cases, and stratified Cox proportional hazards regression to compare the relative severity of alpha cases compared to wild type diagnosed from 16th November 2020 to 11th January 2021. RESULTS: Using data from 185,234 people who tested positive for SARS-CoV-2 in the community (alpha=93,153; wild-type=92,081), in fully adjusted analysis accounting for individual-level demographics and comorbidities as well as regional variation in infection incidence, we found alpha associated with 73% higher hazards of all-cause death (aHR: 1.73 (95% CI 1.41 - 2.13; P<.0001)) and 62% higher hazards of hospital admission (aHR: 1.62 ((95% CI 1.48 - 1.78; P<.0001), compared to wild-type virus. Among patients already admitted to ICU, the association between alpha and increased all-cause mortality was smaller and the confidence interval included the null (aHR: 1.20 (95% CI 0.74 - 1.95; P=0.45)). CONCLUSIONS: The SARS-CoV-2 alpha variant is associated with an increased risk of both hospitalisation and mortality than wild-type virus.

7.
Diagn Progn Res ; 6(1): 6, 2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1702772

ABSTRACT

BACKGROUND: Obtaining accurate estimates of the risk of COVID-19-related death in the general population is challenging in the context of changing levels of circulating infection. METHODS: We propose a modelling approach to predict 28-day COVID-19-related death which explicitly accounts for COVID-19 infection prevalence using a series of sub-studies from new landmark times incorporating time-updating proxy measures of COVID-19 infection prevalence. This was compared with an approach ignoring infection prevalence. The target population was adults registered at a general practice in England in March 2020. The outcome was 28-day COVID-19-related death. Predictors included demographic characteristics and comorbidities. Three proxies of local infection prevalence were used: model-based estimates, rate of COVID-19-related attendances in emergency care, and rate of suspected COVID-19 cases in primary care. We used data within the TPP SystmOne electronic health record system linked to Office for National Statistics mortality data, using the OpenSAFELY platform, working on behalf of NHS England. Prediction models were developed in case-cohort samples with a 100-day follow-up. Validation was undertaken in 28-day cohorts from the target population. We considered predictive performance (discrimination and calibration) in geographical and temporal subsets of data not used in developing the risk prediction models. Simple models were contrasted to models including a full range of predictors. RESULTS: Prediction models were developed on 11,972,947 individuals, of whom 7999 experienced COVID-19-related death. All models discriminated well between individuals who did and did not experience the outcome, including simple models adjusting only for basic demographics and number of comorbidities: C-statistics 0.92-0.94. However, absolute risk estimates were substantially miscalibrated when infection prevalence was not explicitly modelled. CONCLUSIONS: Our proposed models allow absolute risk estimation in the context of changing infection prevalence but predictive performance is sensitive to the proxy for infection prevalence. Simple models can provide excellent discrimination and may simplify implementation of risk prediction tools.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317991

ABSTRACT

Background: The COVID-19 epidemic has differentially impacted communities across England, with regional variation in rates of confirmed cases, hospitalisations and deaths. Measurement of this burden changed substantially over the first months, as surveillance was expanded to accommodate the escalating epidemic. Laboratory confirmation was initially restricted to clinical need (“pillar 1”) before expanding to community-wide symptomatics (“pillar 2”). This study aimed to ascertain whether biases in case data resulting from varying testing coverage could be addressed by drawing inference from COVID-19-related deaths. Methods: We fit a Bayesian spatio-temporal model to weekly COVID-19-related deaths per local authority (LTLA) throughout the first wave (1 January - 30 June 2020), with respect to the local epidemic timing and the age, deprivation and ethnic composition of its population. We drew predictions averaging these sources of case-fatality variation, and back-translated according to a population case fatality ratio estimated under community-wide testing. Results: A model including temporally- and spatially-correlated random effects best accommodated the observed variation in mortality, after accounting for local population characteristics. Final predictions suggest a total of 276,219-420,491 cases over the first wave - an increase of 19-81% from the reported. Conclusions: Limitations in testing capacity biased the observed trajectory of COVID-19 cases throughout the first wave. Basing inference on COVID-19-related mortality and higher-coverage testing later in the time period, we could explore the extent of this bias more explicitly. Evidence points towards substantial under-representation of initial growth and peak magnitude of symptomatic infections nationally, to which different parts of the country contribute unequally.Funding Information: The following funding sources are acknowledged as providing funding for the named authors:This research was partly funded by the Bill & Melinda Gates Foundation (NTD Modelling Consortium OPP1184344: GFM;OPP1183986: ESN). Royal Society (Dorothy Hodgkin Fellowship: RL). Wellcome Trust (206250/Z/17/Z: TWR;206471/Z/17/Z: OJB;210758/Z/18/Z: SA). The following funding sources are acknowledged as providing funding for the working groupauthors:This research was partly funded by the Bill & Melinda Gates Foundation (INV-001754: MQ;INV-003174: JYL, KP, MJ, YL;INV-016832: SRP;NTD Modelling Consortium OPP1184344: CABP;OPP1139859: BJQ;OPP1191821: KO'R). BMGF (INV-016832;OPP1157270: KA). CADDE MR/S0195/1 & FAPESP 18/14389-0 (PM). EDCTP2 (RIA2020EF-2983-CSIGN: HPG). Elrha R2HC/UK FCDO/Wellcome Trust/This research was partly funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care (KvZ). ERC Starting Grant (#757699: MQ). ERC (SG 757688: CJVA, KEA). This project has received funding from the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: AG, KP, MJ, RCB, WJE, YL). FCDO/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: CABP, KvZ). This research was partly funded by the Global Challenges Research Fund (GCRF) project 'RECAP' managed through RCUK and ESRC (ES/P010873/1: CIJ, TJ). HDR UK (MR/S003975/1: RME). HPRU (NIHR200908: NIB). Innovation Fund (01VSF18015: FK). MRC (MR/N013638/1: EF, NRW;MR/V027956/1: WW). Nakajima Foundation (AE). NIHR (16/136/46: BJQ;16/137/109: BJQ, FYS, MJ, YL;1R01AI141534-01A1: DH;Health Protection Research Unit for Modelling Methodology HPRU-2012-10096: TJ;NIHR200908: AJK, RME;NIHR200929: CVM, FGS, MJ, NGD;PR-OD-1017-20002: AR, WJE). Singapore Ministry of Health (RP). UK DHSC/UK Aid/NIHR (PR-OD-1017-20001: HPG). UK MRC (MC_PC_19065 - Covid 19: Understanding the dynamics and driv rs of the COVID-19 epidemic using real-time outbreak analytics: NGD, RME, SC, TJ, WJE, YL;MR/P014658/1: GMK). Authors of this research receive funding from UK Public Health Rapid Support Team funded by the United Kingdom Department of Health and Social Care (TJ). UKRI Research England (NGD). UKRI (MR/V028456/1: YJ). Wellcome Trust (206250/Z/17/Z: AJK;208812/Z/17/Z: SC, SFlasche;210758/Z/18/Z: JDM, JH, SFunk, SRM;221303/Z/20/Z: MK;UNS110424: FK). No funding (AMF, DCT, YWDC).Declaration of Interests: The authors declare no competing interests.Ethics Approval Statement: Approval for the use of anonymised linelist data was granted by Public Health England and the Department for Health and Social Care. Consent of individuals was not required as no patient identifiable information was used.

9.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322685

ABSTRACT

On March 11th 2020, the World Health Organization characterised COVID-19 as a pandemic. Responses to containing the spread of the virus have relied heavily on policies involving restricting contact between people. Evolving policies regarding shielding and individual choices about restricting social contact will rely heavily on perceived risk of poor outcomes from COVID-19. In order to make informed decisions, both individual and collective, good predictive models are required.   For outcomes related to an infectious disease, the performance of any risk prediction model will depend heavily on the underlying prevalence of infection in the population of interest. Incorporating measures of how this changes over time may result in important improvements in prediction model performance.  This protocol reports details of a planned study to explore the extent to which incorporating time-varying measures of infection burden over time improves the quality of risk prediction models for COVID-19 death in a large population of adult patients in England. To achieve this aim, we will compare the performance of different modelling approaches to risk prediction, including static cohort approaches typically used in chronic disease settings and landmarking approaches incorporating time-varying measures of infection prevalence and policy change, using COVID-19 related deaths data linked to longitudinal primary care electronic health records data within the OpenSAFELY secure analytics platform.

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-320963

ABSTRACT

Background: Care home residents have been severely affected by the COVID-19 pandemic. Electronic Health Records (EHR) hold significant potential for studying the healthcare needs of this vulnerable population;however, identifying care home residents in EHR is not straightforward. We describe and compare three different methods for identifying care home residents in the newly created OpenSAFELY-TPP data analytics platform.  Methods: : Working on behalf of NHS England, we identified individuals aged 65 years or older potentially living in a care home on the 1st of February 2020 using (1) a complex address linkage, in which cleaned GP registered addresses were matched to old age care home addresses using data from the Care and Quality Commission (CQC);(2) coded events in the EHR;(3) household identifiers, age and household size to identify households with more than 3 individuals aged 65 years or older as potential care home residents. Raw addresses were not available to the investigators. Results: : Of 4,437,286 individuals aged 65 years or older, 2.27% were identified as potential care home residents using the complex address linkage, 1.96% using coded events, 3.13% using household size and age and 3.74% using either of these methods. 53,210 individuals (32.0% of all potential care home residents) were classified as care home residents using all three methods. Address linkage had the largest overlap with the other methods;93.3% of individuals identified as care home residents using the address linkage were also identified as such using either coded events or household age and size.  Conclusion: We have described the partial overlap between three methods for identifying care home residents in EHR, and provide detailed instructions for how to implement these in OpenSAFELY-TPP to support research into the impact of the COVID-19 pandemic on care home residents.

11.
The Lancet regional health. Europe ; 14:100295-100295, 2022.
Article in English | EuropePMC | ID: covidwho-1615360

ABSTRACT

Background Residents in care homes have been severely impacted by COVID-19. We describe trends in the mortality risk among residents of care homes compared to private homes. Methods On behalf of NHS England we used OpenSAFELY-TPP to calculate monthly age-standardised risks of death due to all causes and COVID-19 among adults aged >=65 years between 1/2/2019 and 31/03/2021. Care home residents were identified using linkage to Care and Quality Commission data. Findings We included 4,340,648 people aged 65 years or older on the 1st of February 2019, 2.2% of whom were classified as residing in a care or nursing home. Age-standardised mortality risks were approximately 10 times higher among care home residents compared to those in private housing in February 2019: comparative mortality figure (CMF) = 10.59 (95%CI = 9.51, 11.81) among women, and 10.87 (9.93, 11.90) among men. By April 2020 these relative differences had increased to more than 17 times with CMFs of 17.57 (16.43, 18.79) among women and 18.17 (17.22, 19.17) among men. CMFs did not increase during the second wave, despite a rise in the absolute age-standardised COVID-19 mortality risks. Interpretation COVID-19 has had a disproportionate impact on the mortality of care home residents in England compared to older residents of private homes, but only in the first wave. This may be explained by a degree of acquired immunity, improved protective measures or changes in the underlying frailty of the populations. The care home population should be prioritised for measures aimed at controlling COVID-19. Funding Medical Research Council MR/V015737/1

12.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296879

ABSTRACT

Background: The COVID-19 epidemic has differentially impacted communities across England, with regional variation in rates of confirmed cases, hospitalisations and deaths. Measurement of this burden changed substantially over the first months, as surveillance was expanded to accommodate the escalating epidemic. Laboratory confirmation was initially restricted to clinical need (“pillar 1”) before expanding to community-wide symptomatics (“pillar 2”). This study aimed to ascertain whether inconsistent measurement of case data resulting from varying testing coverage could be reconciled by drawing inference from COVID-19-related deaths. MethodsWe fit a Bayesian spatio-temporal model to weekly COVID-19-related deaths per local authority (LTLA) throughout the first wave (1 January - 30 June 2020), adjusting for the local epidemic timing and the age, deprivation and ethnic composition of its population. We combined predictions from this model with case data under community-wide, symptomatic testing and infection prevalence estimates from the ONS infection survey, to infer the likely trajectory of infections implied by the deaths in each LTLA.ResultsA model including temporally- and spatially-correlated random effects was found to best accommodate the observed variation in COVID-19-related deaths, after accounting for local population characteristics. Predicted case counts under community-wide symptomatic testing suggest a total of 275,000-420,000 cases over the first wave - a median of over 100,000 additional to the total confirmed in practice under varying testing coverage. This translates to a peak incidence of around 200,000 total infections per week across England. The extent to which estimated total infections are reflected in confirmed case counts was found to vary substantially across LTLAs, ranging from 7% in Leicester to 96% in Gloucester with a median of 23%. ConclusionsLimitations in testing capacity biased the observed trajectory of COVID-19 infections throughout the first wave. Basing inference on COVID-19-related mortality and higher-coverage testing later in the time period, we could explore the extent of this bias more explicitly. Evidence points towards substantial under-representation of initial growth and peak magnitude of infections nationally, to which different parts of the country contribute unequally.

13.
Euro Surveill ; 26(49)2021 12.
Article in English | MEDLINE | ID: covidwho-1566613

ABSTRACT

BackgroundPopulation-level mathematical models of outbreaks typically assume that disease transmission is not impacted by population density ('frequency-dependent') or that it increases linearly with density ('density-dependent').AimWe sought evidence for the role of population density in SARS-CoV-2 transmission.MethodsUsing COVID-19-associated mortality data from England, we fitted multiple functional forms linking density with transmission. We projected forwards beyond lockdown to ascertain the consequences of different functional forms on infection resurgence.ResultsCOVID-19-associated mortality data from England show evidence of increasing with population density until a saturating level, after adjusting for local age distribution, deprivation, proportion of ethnic minority population and proportion of key workers among the working population. Projections from a mathematical model that accounts for this observation deviate markedly from the current status quo for SARS-CoV-2 models which either assume linearity between density and transmission (30% of models) or no relationship at all (70%). Respectively, these classical model structures over- and underestimate the delay in infection resurgence following the release of lockdown.ConclusionIdentifying saturation points for given populations and including transmission terms that account for this feature will improve model accuracy and utility for the current and future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Communicable Disease Control , England/epidemiology , Humans , Minority Groups
14.
Wellcome Open Res ; 6: 90, 2021.
Article in English | MEDLINE | ID: covidwho-1395316

ABSTRACT

Background: Care home residents have been severely affected by the COVID-19 pandemic. Electronic Health Records (EHR) hold significant potential for studying the healthcare needs of this vulnerable population; however, identifying care home residents in EHR is not straightforward. We describe and compare three different methods for identifying care home residents in the newly created OpenSAFELY-TPP data analytics platform.  Methods: Working on behalf of NHS England, we identified individuals aged 65 years or older potentially living in a care home on the 1st of February 2020 using (1) a complex address linkage, in which cleaned GP registered addresses were matched to old age care home addresses using data from the Care and Quality Commission (CQC); (2) coded events in the EHR; (3) household identifiers, age and household size to identify households with more than 3 individuals aged 65 years or older as potential care home residents. Raw addresses were not available to the investigators. Results: Of 4,437,286 individuals aged 65 years or older, 2.27% were identified as potential care home residents using the complex address linkage, 1.96% using coded events, 3.13% using household size and age and 3.74% using either of these methods. 53,210 individuals (32.0% of all potential care home residents) were classified as care home residents using all three methods. Address linkage had the largest overlap with the other methods; 93.3% of individuals identified as care home residents using the address linkage were also identified as such using either coded events or household age and size.  Conclusion: We have described the partial overlap between three methods for identifying care home residents in EHR, and provide detailed instructions for how to implement these in OpenSAFELY-TPP to support research into the impact of the COVID-19 pandemic on care home residents.

15.
Clin Infect Dis ; 2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1393220

ABSTRACT

BACKGROUND: The SARS-CoV-2 alpha variant (B.1.1.7) is associated with higher transmissibility than wild type virus, becoming the dominant variant in England by January 2021. We aimed to describe the severity of the alpha variant in terms of the pathway of disease from testing positive to hospital admission and death. METHODS: With the approval of NHS England, we linked individual-level data from primary care with SARS-CoV-2 community testing, hospital admission, and ONS all-cause death data. We used testing data with S-gene target failure as a proxy for distinguishing alpha and wild-type cases, and stratified Cox proportional hazards regression to compare the relative severity of alpha cases compared to wild type diagnosed from 16th November 2020 to 11th January 2021. RESULTS: Using data from 185,234 people who tested positive for SARS-CoV-2 in the community (alpha=93,153; wild-type=92,081), in fully adjusted analysis accounting for individual-level demographics and comorbidities as well as regional variation in infection incidence, we found alpha associated with 73% higher hazards of all-cause death (aHR: 1.73 (95% CI 1.41 - 2.13; P<.0001)) and 62% higher hazards of hospital admission (aHR: 1.62 ((95% CI 1.48 - 1.78; P<.0001), compared to wild-type virus. Among patients already admitted to ICU, the association between alpha and increased all-cause mortality was smaller and the confidence interval included the null (aHR: 1.20 (95% CI 0.74 - 1.95; P=0.45)). CONCLUSIONS: The SARS-CoV-2 alpha variant is associated with an increased risk of both hospitalisation and mortality than wild-type virus.

16.
BMJ ; 374: n1592, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1311065

ABSTRACT

OBJECTIVE: To assess the association between learning disability and risk of hospital admission and death from covid-19 in England among adults and children. DESIGN: Population based cohort study on behalf of NHS England using the OpenSAFELY platform. SETTING: Patient level data were obtained for more than 17 million people registered with a general practice in England that uses TPP software. Electronic health records were linked with death data from the Office for National Statistics and hospital admission data from NHS Secondary Uses Service. PARTICIPANTS: Adults (aged 16-105 years) and children (<16 years) from two cohorts: wave 1 (registered with a TPP practice as of 1 March 2020 and followed until 31 August 2020); and wave 2 (registered 1 September 2020 and followed until 8 February 2021). The main exposure group consisted of people on a general practice learning disability register; a subgroup was defined as those having profound or severe learning disability. People with Down's syndrome and cerebral palsy were identified (whether or not they were on the learning disability register). MAIN OUTCOME MEASURE: Covid-19 related hospital admission and covid-19 related death. Non-covid-19 deaths were also explored. RESULTS: For wave 1, 14 312 023 adults aged ≥16 years were included, and 90 307 (0.63%) were on the learning disability register. Among adults on the register, 538 (0.6%) had a covid-19 related hospital admission; there were 222 (0.25%) covid-19 related deaths and 602 (0.7%) non-covid deaths. Among adults not on the register, 29 781 (0.2%) had a covid-19 related hospital admission; there were 13 737 (0.1%) covid-19 related deaths and 69 837 (0.5%) non-covid deaths. Wave 1 hazard ratios for adults on the learning disability register (adjusted for age, sex, ethnicity, and geographical location) were 5.3 (95% confidence interval 4.9 to 5.8) for covid-19 related hospital admission and 8.2 (7.2 to 9.4) for covid-19 related death. Wave 2 produced similar estimates. Associations were stronger among those classified as having severe to profound learning disability, and among those in residential care. For both waves, Down's syndrome and cerebral palsy were associated with increased hazards for both events; Down's syndrome to a greater extent. Hazard ratios for non-covid deaths followed similar patterns with weaker associations. Similar patterns of increased relative risk were seen for children, but covid-19 related deaths and hospital admissions were rare, reflecting low event rates among children. CONCLUSIONS: People with learning disability have markedly increased risks of hospital admission and death from covid-19, over and above the risks observed for non-covid causes of death. Prompt access to covid-19 testing and healthcare is warranted for this vulnerable group, and prioritisation for covid-19 vaccination and other targeted preventive measures should be considered.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , Learning Disabilities/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Cerebral Palsy/epidemiology , Cohort Studies , Disabled Persons , Down Syndrome/epidemiology , England/epidemiology , Female , Humans , Male , Middle Aged , Young Adult
17.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200266, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309686

ABSTRACT

As several countries gradually release social distancing measures, rapid detection of new localized COVID-19 hotspots and subsequent intervention will be key to avoiding large-scale resurgence of transmission. We introduce ASMODEE (automatic selection of models and outlier detection for epidemics), a new tool for detecting sudden changes in COVID-19 incidence. Our approach relies on automatically selecting the best (fitting or predicting) model from a range of user-defined time series models, excluding the most recent data points, to characterize the main trend in an incidence. We then derive prediction intervals and classify data points outside this interval as outliers, which provides an objective criterion for identifying departures from previous trends. We also provide a method for selecting the optimal breakpoints, used to define how many recent data points are to be excluded from the trend fitting procedure. The analysis of simulated COVID-19 outbreaks suggests ASMODEE compares favourably with a state-of-art outbreak-detection algorithm while being simpler and more flexible. As such, our method could be of wider use for infectious disease surveillance. We illustrate ASMODEE using publicly available data of National Health Service (NHS) Pathways reporting potential COVID-19 cases in England at a fine spatial scale, showing that the method would have enabled the early detection of the flare-ups in Leicester and Blackburn with Darwen, two to three weeks before their respective lockdown. ASMODEE is implemented in the free R package trendbreaker. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Models, Theoretical , Pandemics , SARS-CoV-2/pathogenicity , Algorithms , COVID-19/transmission , COVID-19/virology , Communicable Disease Control , England/epidemiology , Humans , United Kingdom/epidemiology
18.
PLoS Comput Biol ; 17(7): e1009162, 2021 07.
Article in English | MEDLINE | ID: covidwho-1305574

ABSTRACT

On March 23 2020, the UK enacted an intensive, nationwide lockdown to mitigate transmission of COVID-19. As restrictions began to ease, more localized interventions were used to target resurgences in transmission. Understanding the spatial scale of networks of human interaction, and how these networks change over time, is critical to targeting interventions at the most at-risk areas without unnecessarily restricting areas at low risk of resurgence. We use detailed human mobility data aggregated from Facebook users to determine how the spatially-explicit network of movements changed before and during the lockdown period, in response to the easing of restrictions, and to the introduction of locally-targeted interventions. We also apply community detection techniques to the weighted, directed network of movements to identify geographically-explicit movement communities and measure the evolution of these community structures through time. We found that the mobility network became more sparse and the number of mobility communities decreased under the national lockdown, a change that disproportionately affected long distance connections central to the mobility network. We also found that the community structure of areas in which locally-targeted interventions were implemented following epidemic resurgence did not show reorganization of community structure but did show small decreases in indicators of travel outside of local areas. We propose that communities detected using Facebook or other mobility data be used to assess the impact of spatially-targeted restrictions and may inform policymakers about the spatial extent of human movement patterns in the UK. These data are available in near real-time, allowing quantification of changes in the distribution of the population across the UK, as well as changes in travel patterns to inform our understanding of the impact of geographically-targeted interventions.


Subject(s)
COVID-19 , Communicable Disease Control/statistics & numerical data , Travel/statistics & numerical data , Algorithms , COVID-19/epidemiology , COVID-19/prevention & control , Computational Biology , Human Activities/statistics & numerical data , Humans , SARS-CoV-2 , Social Media/statistics & numerical data , United Kingdom
19.
Sci Rep ; 11(1): 7106, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1157914

ABSTRACT

The National Health Service (NHS) Pathways triage system collates data on enquiries to 111 and 999 services in England. Since the 18th of March 2020, these data have been made publically available for potential COVID-19 symptoms self-reported by members of the public. Trends in such reports over time are likely to reflect behaviour of the ongoing epidemic within the wider community, potentially capturing valuable information across a broader severity profile of cases than hospital admission data. We present a fully reproducible analysis of temporal trends in NHS Pathways reports until 14th May 2020, nationally and regionally, and demonstrate that rates of growth/decline and effective reproduction number estimated from these data may be useful in monitoring transmission. This is a particularly pressing issue as lockdown restrictions begin to be lifted and evidence of disease resurgence must be constantly reassessed. We further assess the correlation between NHS Pathways reports and a publicly available NHS dataset of COVID-19-associated deaths in England, finding that enquiries to 111/999 were strongly associated with daily deaths reported 16 days later. Our results highlight the potential of NHS Pathways as the basis of an early warning system. However, this dataset relies on self-reported symptoms, which are at risk of being severely biased. Further detailed work is therefore necessary to investigate potential behavioural issues which might otherwise explain our conclusions.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , England/epidemiology , Humans , SARS-CoV-2/isolation & purification , State Medicine
20.
Euro Surveill ; 26(11)2021 03.
Article in English | MEDLINE | ID: covidwho-1143384

ABSTRACT

The SARS-CoV-2 B.1.1.7 variant of concern (VOC) is increasing in prevalence across Europe. Accurate estimation of disease severity associated with this VOC is critical for pandemic planning. We found increased risk of death for VOC compared with non-VOC cases in England (hazard ratio: 1.67; 95% confidence interval: 1.34-2.09; p < 0.0001). Absolute risk of death by 28 days increased with age and comorbidities. This VOC has potential to spread faster with higher mortality than the pandemic to date.


Subject(s)
COVID-19/mortality , SARS-CoV-2/pathogenicity , Age Factors , Comorbidity , England/epidemiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL