Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Viruses ; 15(2)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2236473

ABSTRACT

The transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to be overdispersed, meaning that only a fraction of infected cases contributes to super-spreading. While cluster interventions are an effective measure for controlling pandemics due to the viruses' overdispersed nature, a quantitative assessment of the risk of clustering has yet to be sufficiently presented. Using systematically collected cluster surveillance data for coronavirus disease 2019 (COVID-19) from June 2020 to June 2021 in Japan, we estimated the activity-dependent risk of clustering in 23 establishment types. The analysis indicated that elderly care facilities, welfare facilities for people with disabilities, and hospitals had the highest risk of clustering, with 4.65 (95% confidence interval [CI]: 4.43-4.87), 2.99 (2.59-3.46), and 2.00 (1.88-2.12) cluster reports per million event users, respectively. Risks in educational settings were higher overall among older age groups, potentially being affected by activities with close and uncontrollable contact during extracurricular hours. In dining settings, drinking and singing increased the risk by 10- to 70-fold compared with regular eating settings. The comprehensive analysis of the COVID-19 cluster records provides an additional scientific basis for the design of customized interventions.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , SARS-CoV-2 , Cluster Analysis , Hospitals , Japan/epidemiology
2.
BMC Infect Dis ; 22(1): 933, 2022 Dec 12.
Article in English | MEDLINE | ID: covidwho-2162315

ABSTRACT

BACKGROUND: It has been descriptively argued that the case fatality risk (CFR) of coronavirus disease (COVID-19) is elevated when medical services are overwhelmed. The relationship between CFR and pressure on health-care services should thus be epidemiologically explored to account for potential epidemiological biases. The purpose of the present study was to estimate the age-dependent CFR in Tokyo and Osaka over time, investigating the impact of caseload demand on the risk of death. METHODS: We estimated the time-dependent CFR, accounting for time delay from diagnosis to death. To this end, we first determined the time distribution from diagnosis to death, allowing variations in the delay over time. We then assessed the age-dependent CFR in Tokyo and Osaka. In Osaka, the risk of intensive care unit (ICU) admission was also estimated. RESULTS: The CFR was highest among individuals aged 80 years and older and during the first epidemic wave from February to June 2020, estimated as 25.4% (95% confidence interval [CI] 21.1 to 29.6) and 27.9% (95% CI 20.6 to 36.1) in Tokyo and Osaka, respectively. During the fourth wave of infection (caused by the Alpha variant) in Osaka the CFR among the 70s and ≥ 80s age groups was, respectively, 2.3 and 1.5 times greater than in Tokyo. Conversely, despite the surge in hospitalizations, the risk of ICU admission among those aged 80 and older in Osaka decreased. Such time-dependent variation in the CFR was not seen among younger patients < 70 years old. With the Omicron variant, the CFR among the 80s and older in Tokyo and Osaka was 3.2% (95% CI 3.0 to 3.5) and 2.9% (95% CI 2.7 to 3.1), respectively. CONCLUSION: We found that without substantial control, the CFR can increase when a surge in cases occurs with an identifiable elevation in risk-especially among older people. Because active treatment options including admission to ICU cannot be offered to the elderly with an overwhelmed medical service, the CFR value can potentially double compared with that in other areas of health care under less pressure.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , Aged, 80 and over , COVID-19/epidemiology , Hospital Bed Capacity , Intensive Care Units
3.
Epidemics ; 41: 100655, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2130795

ABSTRACT

Severe acute respiratory coronavirus 2 (SARS-CoV-2) infections have been associated with substantial presymptomatic transmission, which occurs when the generation interval-the time between infection of an individual with a pathogen and transmission of the pathogen to another individual-is shorter than the incubation period-the time between infection and symptom onset. We collected a dataset of 257 SARS-CoV-2 transmission pairs in Japan during 2020 and jointly estimated the mean incubation period of infectors (4.8 days, 95 % CrI: 4.4-5.1 days), mean generation interval to when they infect others (4.3 days, 95 % credible interval [CrI]: 4.0-4.7 days), and the correlation (Kendall's tau: 0.5, 95 % CrI: 0.4-0.6) between these two epidemiological parameters. Our finding of a positive correlation and mean generation interval shorter than the mean infector incubation period indicates ample infectiousness before symptom onset and suggests that reliance on isolation of symptomatic COVID-19 cases as a focal point of control efforts is insufficient to address the challenges posed by SARS-CoV-2 transmission dynamics.

4.
Epidemiol Infect ; 150: e197, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2115747

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been described as having an overdispersed offspring distribution, i.e. high variation in the number of secondary transmissions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) per single primary COVID-19 case. Accordingly, countermeasures focused on high-risk settings and contact tracing could efficiently reduce secondary transmissions. However, as variants of concern with elevated transmissibility continue to emerge, controlling COVID-19 with such focused approaches has become difficult. It is vital to quantify temporal variations in the offspring distribution dispersibility. Here, we investigated offspring distributions for periods when the ancestral variant was still dominant (summer, 2020; wave 2) and when Alpha variant (B.1.1.7) was prevailing (spring, 2021; wave 4). The dispersion parameter (k) was estimated by analysing contact tracing data and fitting a negative binomial distribution to empirically observed offspring distributions from Nagano, Japan. The offspring distribution was less dispersed in wave 4 (k = 0.32; 95% confidence interval (CI) 0.24-0.43) than in wave 2 (k = 0.21 (95% CI 0.13-0.36)). A high proportion of household transmission was observed in wave 4, although the proportion of secondary transmissions generating more than five secondary cases did not vary over time. With this decreased variation, the effectiveness of risk group-focused interventions may be diminished.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Japan/epidemiology , Contact Tracing
5.
BMC Infect Dis ; 22(1): 808, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2098321

ABSTRACT

BACKGROUND: In 2020, the Japanese government implemented first of two Go To Travel campaigns to promote the tourism sector as well as eating and drinking establishments, especially in remote areas. The present study aimed to explore the relationship between enhanced travel and geographic propagation of COVID-19 across Japan, focusing on the second campaign with nationwide large-scale economic boost in 2020. METHODS: We carried out an interrupted time-series analysis to identify the possible cause-outcome relationship between the Go To Travel campaign and the spread of infection to nonurban areas in Japan. Specifically, we counted the number of prefectures that experienced a weekly incidence of three, five, and seven COVID-19 cases or more per 100,000 population, and we compared the rate of change before and after the campaign. RESULTS: Three threshold values and three different models identified an increasing number of prefectures above the threshold, indicating that the inter-prefectural spread intensified following the launch of the second Go To Travel campaign from October 1st, 2020. The simplest model that accounted for an increase in the rate of change only provided the best fit. We estimated that 0.24 (95% confidence interval 0.15 to 0.34) additional prefectures newly exceeded five COVID-19 cases per 100,000 population per week during the second campaign. CONCLUSIONS: The enhanced movement resulting from the Go To Travel campaign facilitated spatial spread of COVID-19 from urban to nonurban locations, where health-care capacity may have been limited.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Japan/epidemiology , Travel , Hospital Bed Capacity , Incidence
6.
J Theor Biol ; 554: 111278, 2022 Dec 07.
Article in English | MEDLINE | ID: covidwho-2031496

ABSTRACT

The concept of doubling time has been increasingly used since the onset of the coronavirus disease 2019 (COVID-19) pandemic, but its characteristics are not well understood, especially as applied to infectious disease epidemiology. The present study aims to be a practical guide to monitoring the doubling time of infectious diseases. Via simulation exercise, we clarify the epidemiological characteristics of doubling time, allowing possible interpretations. We show that the commonly believed relationship between the doubling time and intrinsic growth rate in population ecology does not strictly apply to infectious diseases, and derive the correct relationship between the two. We examined the impact of varying (i) the growth rate, (ii) the starting point of counting cumulative number of cases, and (iii) the length of observation on statistical estimation of doubling time. It was difficult to recover values of growth rate from doubling time, especially when the growth rate was small. Starting time period is critical when the statistical estimation of doubling time occurs during the course of an epidemic. The length of observation was critical in determining the overall magnitude of doubling time, and when only the latest 1-2 weeks' data were used, the resulting doubling time was very short, regardless of the intrinsic growth rate r. We suggest that doubling time estimates of infectious disease epidemics should at a minimum be accompanied by descriptions of (i) the starting time at which the cumulative count is initiated and (ii) the length of observation.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Pandemics , SARS-CoV-2
7.
Math Biosci Eng ; 19(9): 9005-9017, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1988156

ABSTRACT

The Omicron variant spreads fastest as ever among the severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) we had so far. The BA.1 and BA.2 sublineages of Omicron are circulating worldwide and it is urgent to evaluate the transmission advantages of these sublineages. Using a mathematical model describing trajectories of variant frequencies that assumes a constant ratio in mean generation times and a constant ratio in effective reproduction numbers among variants, trajectories of variant frequencies in Denmark from November 22, 2021 to February 26, 2022 were analyzed. We found that the mean generation time of Omicron BA.1 is 0.44-0.46 times that of Delta and the effective reproduction number of Omicron BA.1 is 1.88-2.19 times larger than Delta under the epidemiological conditions at the time. We also found that the mean generation time of Omicron BA.2 is 0.76-0.80 times that of BA.1 and the effective reproduction number of Omicron BA.2 is 1.25-1.27 times larger than Omicron BA.1. These estimates on the ratio of mean generation times and the ratio of effective reproduction numbers have epidemiologically important implications. The contact tracing for Omicron BA.2 infections must be done more quickly than that for BA.1 to stop further infections by quarantine. In the Danish population, the control measures against Omicron BA.2 need to reduce 20-21% of additional contacts compared to that against BA.1.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Denmark/epidemiology , Humans , Reproduction , SARS-CoV-2/genetics
8.
Int J Infect Dis ; 122: 300-306, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1945191

ABSTRACT

OBJECTIVES: COVID-19 vaccination in Japan started on February 17, 2021. Because the timing of vaccination and the risk of severe COVID-19 greatly varied with age, the present study aimed to monitor the age-specific fractions of the population who were immune to SARS-CoV-2 infection after vaccination. METHODS: Natural infection remained extremely rare, accounting for less than 5% of the population by the end of 2021; thus, we ignored natural infection-induced immunity and focused on vaccine-induced immunity. We estimated the fraction of the population immune to infection by age group using vaccination registry data from February 17, 2021, to October 17, 2021. We accounted for two important sources of delay: (i) reporting delay and (ii) time from vaccination until immune protection develops. RESULTS: At the end of the observation period, the proportion of individuals still susceptible to SARS-CoV-2 infection substantially varied by age and was estimated to be ≥90% among people aged 0-14 years, in contrast to approximately 20% among the population aged ≥65 years. We also estimated the effective reproduction number over time using a next-generation matrix while accounting for differences in the proportion immune to infection by age. CONCLUSION: The COVID-19 immune landscape greatly varied by age, and a substantial proportion of young adults remained susceptible. Vaccination contributed to a marked decrease in the reproduction number.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Disease Susceptibility , Humans , Japan/epidemiology , SARS-CoV-2 , Vaccination , Young Adult
9.
Emerg Infect Dis ; 28(9): 1777-1784, 2022 09.
Article in English | MEDLINE | ID: covidwho-1933544

ABSTRACT

COVID-19 vaccine effectiveness against death in Japan remains unknown. Furthermore, although evidence indicates that healthcare capacity influences case-fatality risk (CFR), it remains unknown whether this relationship is mediated by age. With a modeling study, we analyzed daily COVID-19 cases and deaths during January-August 2021 by using Tokyo surveillance data to jointly estimate COVID-19 vaccine effectiveness against death and age-specific CFR. We also examined daily healthcare operations to determine the association between healthcare burden and age-specific CFR. Among fully vaccinated patients, vaccine effectiveness against death was 88.6% among patients 60-69 years of age, 83.9% among patients 70-79 years of age, 83.5% among patients 80-89 years of age, and 77.7% among patients >90 years of age. A positive association of several indicators of healthcare burden with CFR among patients >70 years of age suggested an age-dependent effect of healthcare burden on CFR in Japan.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Delivery of Health Care , Humans , Japan/epidemiology , SARS-CoV-2 , Tokyo/epidemiology
10.
Front Public Health ; 10: 837970, 2022.
Article in English | MEDLINE | ID: covidwho-1911114

ABSTRACT

Background: Osaka, the third largest prefecture in Japan, experienced a rapid replacement of preexisting strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by variant alpha during March-April 2021. Assessing the burden of variant alpha on health centers and medical institutions is vital to anticipating the surge of patients. The present study aimed to estimate the age-dependent risks of coronavirus disease (COVID-19) putatively caused by variant alpha in Japan, focusing on epidemiological dynamics in Osaka. Methods: Descriptive analyses were conducted using data on confirmed, severe and fatal cases of COVID-19 from 16 November 2020 to 22 May 2021. All cases were divided into 6-9 age groups to compare the risks of confirmed diagnosis, severe illness and death from COVID-19 with variant alpha to those caused by preexisting strains. Results: Individuals with COVID-19 aged under 30 years were more likely to be infected with variant alpha than those in their 40s. The incidence of severe illness and death among all age groups with COVID-19 due to variant alpha was higher than that due to preexisting strains. Patients older than 40 years experienced an increased risk of severe illness and death if infected with variant alpha. However, the proportion of severe cases was lower in the group aged 80 years and older infected with variant alpha than in those infected with preexisting strains. Conclusion: Our analysis suggests that the incidence of infection among young people aged below 30 years old increased relative to ordinary strains. Risks of severe illness and death in patients with variant alpha COVID-19 was higher than in those with preexisting strains in Osaka, Japan. However, a decrease in the risk of severe illness was observed in people aged ≥80 years, which is probably because medical facilities in Osaka were overwhelmed in April and May 2021. Continuous monitoring of COVID-19 cases with new variants is vital to secure sufficient medical resources for all patients who require medical care.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , COVID-19/epidemiology , Humans , Japan/epidemiology
11.
Math Biosci Eng ; 19(7): 7410-7424, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1903581

ABSTRACT

Japan successfully implemented a mass vaccination program for coronavirus disease 2019 (COVID-19), immunizing more than 1 million persons a day by July 2021. Given the COVID-19 vaccination capacity limitations, an urgent question was raised regarding whether it would be better to (ⅰ) complete double-dose COVID-19 vaccination among healthcare personnel and older adults before beginning double-dose vaccination of younger adults (double-dose strategy) or (ⅱ) allocate a single dose of COVID-19 vaccine to all adults regardless of age before administering the second dose (single-dose-first strategy). We used an age-structured susceptible-infectious-recovered (SIR) compartment model to compare the effectiveness of possible COVID-19 vaccination strategies and the length of public health and social measures (PHSM) to minimize the cumulative COVID-19 disease risk and death toll. Our results indicate that if the single-dose-first strategy was taken, an estimated total of 1,387,078 persons, i.e., 263,315 children, 928,518 young adults, and 195,245 older adults, would develop COVID-19, resulting in 15,442 deaths. In contrast, if the double-dose strategy was taken instead, an estimated total of 1,900,172 persons, i.e., 377,107 children, 1,315,927 young adults, and 207,138 older adults, would develop COVID-19, yielding 17,423 deaths. Real-time investigation favored the disease transmission blocking option, i.e., single-dose vaccination strategy. Applying the single-dose-first strategy should yield a smaller epidemic size than applying the double-dose strategy; however, for both strategies, PHSM will be essential by the time second-dose COVID-19 vaccination is complete among all adults.


Subject(s)
COVID-19 , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Humans , Japan/epidemiology , Mass Vaccination , Vaccination/methods , Young Adult
12.
Math Biosci Eng ; 19(7): 7374-7387, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1903580

ABSTRACT

In response to the coronavirus disease 2019 (COVID-19) pandemic, Japan conducted mass vaccination. Seventy-two million doses of vaccine (i.e., for 36 million people if a double dose is planned per person) were obtained, with initial vaccination of the older population (≡ 65 years). Because of the limited number of vaccines, the government discussed shifting the plan to administering only a single dose so that younger individuals (<65 years) could also be vaccinated with one shot. This study aimed to determine the optimal vaccine distribution strategy using a simple mathematical method. After accounting for age-dependent relative susceptibility after single- and double-dose vaccination (vs and vd, respectively, compared with unvaccinated), we used the age-dependent transmission model to compute the final size for various patterns of vaccine distributions. Depending on the values of vs, the cumulative risk of death would be lower if all 72 million doses were used as a double dose for older people than if a single-dose program was conducted in which half is administered to older people and the other half is administered to adults (i.e., 1,856,000 deaths in the former program and 1,833,000-2,355,000 deaths [depending on the values of vs] in the latter). Even if 90% of older people were vaccinated twice and 100% of adults were vaccinated once, the effective reproduction number would be reduced from 2.50 to1.14. Additionally, the cumulative risk of infection would range from 12.0% to 54.6% and there would be 421,000-1,588,000deaths (depending on the values of vs). If an epidemic appears only after completing vaccination, vaccination coverage using a single-dose program with widespread vaccination among adults will not outperform a double-dose strategy.


Subject(s)
COVID-19 , Vaccines , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Pandemics/prevention & control , Vaccination
13.
Emerg Infect Dis ; 27(3): 915-918, 2021 03.
Article in English | MEDLINE | ID: covidwho-1100023

ABSTRACT

The overall coronavirus disease secondary attack rate (SAR) in family members was 19.0% in 10 prefectures of Japan during February 22-May 31, 2020. The SAR was lower for primary cases diagnosed early, within 2 days after symptom onset. The SAR of asymptomatic primary cases was 11.8%.


Subject(s)
COVID-19/epidemiology , Family , Asymptomatic Infections/epidemiology , COVID-19/diagnosis , COVID-19/transmission , Contact Tracing/statistics & numerical data , Female , Humans , Incidence , Japan/epidemiology , Male , SARS-CoV-2/isolation & purification , Time Factors
14.
Int J Infect Dis ; 105: 236-238, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1093059

ABSTRACT

BACKGROUND: The epidemiological importance of asymptomatic individuals who would never develop illness, compared to those who eventually develop symptoms, has yet to be fully clarified. METHODS: The very first cluster data in Tokyo and Kanagawa (n = 36) were analyzed. Movement of all close contact was restricted for 14 days and they underwent laboratory testing with polymerase chain reaction. The reproduction numbers of symptomatic and asymptomatic cases were estimated. RESULTS: The reproduction number for symptomatic cases was estimated to be 1.2 (95% confidence interval (CI): 0.5-2.9). The relative infectiousness of asymptomatically infected cases was estimated to be 0.27 (95% CI: 0.03-0.81) of symptomatic cases. CONCLUSION: The relative transmissibility of asymptomatic cases is limited. Observing clusters starting with symptomatic transmission might be sufficient for the control.


Subject(s)
Asymptomatic Infections , COVID-19/transmission , SARS-CoV-2 , Basic Reproduction Number , Female , Humans , Japan/epidemiology , Male , Middle Aged
15.
BMJ Open ; 11(2): e042002, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1085262

ABSTRACT

OBJECTIVE: On 7 April 2020, the Japanese government declared a state of emergency in response to the novel coronavirus outbreak. To estimate the impact of the declaration on regional cities with low numbers of COVID-19 cases, large-scale surveillance to capture the current epidemiological situation of COVID-19 was urgently conducted in this study. DESIGN: Cohort study. SETTING: Social networking service (SNS)-based online survey conducted in five prefectures of Japan: Tottori, Kagawa, Shimane, Tokushima and Okayama. PARTICIPANTS: 127 121 participants from the five prefectures surveyed between 24 March and 5 May 2020. INTERVENTIONS: An SNS-based healthcare system named COOPERA (COvid-19: Operation for Personalized Empowerment to Render smart prevention And care seeking) was launched. It asks questions regarding postcode, personal information, preventive actions, and current and past symptoms related to COVID-19. PRIMARY AND SECONDARY OUTCOME MEASURES: Empirical Bayes estimates of age-sex-standardised incidence rate (EBSIR) of symptoms and the spatial correlation between the number of those who reported having symptoms and the number of COVID-19 cases were examined to identify the geographical distribution of symptoms in the five prefectures. RESULTS: 97.8% of participants had no subjective symptoms. We identified several geographical clusters of fever with significant spatial correlation (r=0.67) with the number of confirmed COVID-19 cases, especially in the urban centres of prefectural capital cities. CONCLUSIONS: Given that there are still several high-risk areas measured by EBSIR, careful discussion on which areas should be reopened at the end of the state of emergency is urgently required using real-time SNS system to monitor the nationwide epidemic.


Subject(s)
COVID-19/epidemiology , Social Networking , Adolescent , Adult , Aged , Aged, 80 and over , Bayes Theorem , Cohort Studies , Epidemiological Monitoring , Female , Humans , Japan/epidemiology , Male , Middle Aged , Young Adult
16.
J Clin Med ; 9(10)2020 Sep 27.
Article in English | MEDLINE | ID: covidwho-905709

ABSTRACT

When a novel infectious disease emerges, enhanced contact tracing and isolation are implemented to prevent a major epidemic, and indeed, they have been successful for the control of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which have been greatly reduced without causing a global pandemic. Considering that asymptomatic and pre-symptomatic infections are substantial for the novel coronavirus disease (COVID-19), the feasibility of preventing the major epidemic has been questioned. Using a two-type branching process model, the present study assesses the feasibility of containing COVID-19 by computing the probability of a major epidemic. We show that if there is a substantial number of asymptomatic transmissions, cutting chains of transmission by means of contact tracing and case isolation would be very challenging without additional interventions, and in particular, untraced cases contribute to lowering the feasibility of containment. Even if isolation of symptomatic cases is conducted swiftly after symptom onset, only secondary transmissions after the symptom onset can be prevented.

17.
J Clin Med ; 9(10)2020 Oct 16.
Article in English | MEDLINE | ID: covidwho-905687

ABSTRACT

The crude case fatality risk (CFR) for coronavirus disease (COVID-19) in Singapore is remarkably small. We aimed to estimate the unbiased CFR by age for Singapore and Japan and compare these estimates by calculating the standardized mortality ratio (SMR). Age-specific CFRs for COVID-19 were estimated in real time, adjusting for the delay from illness onset to death. The SMR in Japan was estimated by using the age distribution of the Singapore population. Among cases aged 60-69 years and 70-79 years, the age-specific CFRs in Singapore were estimated as 1.84% (95% confidence interval: 0.46-4.72%) and 5.57% (1.41-13.97%), respectively, and those in Japan as 5.52% (4.55-6.62%) and 15.49% (13.81-17.27%), respectively. The SMR of COVID-19 in Japan, when compared with Singapore as the baseline, was estimated to be 1.46 (1.09-2.96). The overall CFR for Singapore is lower than that for Japan. It is possible that the circulating variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Singapore causes a milder clinical course of COVID-19 infection compared with other strains. If infection with a low-virulence SARS-CoV-2 variant provides protection against infection by high-virulence strains, the existence of such a strain is encouraging news for the many countries struggling to suppress this virus.

18.
J Clin Med ; 9(10)2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-905539

ABSTRACT

A surge in hospital admissions was observed in Japan in late March 2020, and the incidence of coronavirus disease (COVID-19) temporarily reduced from March to May as a result of the closure of host and hostess clubs, shortening the opening hours of bars and restaurants, and requesting a voluntary reduction of contact outside the household. To prepare for the second wave, it is vital to anticipate caseload demand, and thus, the number of required hospital beds for admitted cases and plan interventions through scenario analysis. In the present study, we analyzed the first wave data by age group so that the age-specific number of hospital admissions could be projected for the second wave. Because the age-specific patterns of the epidemic were different between urban and other areas, we analyzed datasets from two distinct cities: Osaka, where the cases were dominated by young adults, and Hokkaido, where the older adults accounted for the majority of hospitalized cases. By estimating the exponential growth rates of cases by age group and assuming probable reductions in those rates under interventions, we obtained projected epidemic curves of cases in addition to hospital admissions. We demonstrated that the longer our interventions were delayed, the higher the peak of hospital admissions. Although the approach relies on a simplistic model, the proposed framework can guide local government to secure the essential number of hospital beds for COVID-19 cases and formulate action plans.

19.
J Clin Med ; 9(2)2020 Feb 21.
Article in English | MEDLINE | ID: covidwho-827199

ABSTRACT

To understand the severity of infection for a given disease, it is common epidemiological practice to estimate the case fatality risk, defined as the risk of death among cases. However, there are three technical obstacles that should be addressed to appropriately measure this risk. First, division of the cumulative number of deaths by that of cases tends to underestimate the actual risk because deaths that will occur have not yet observed, and so the delay in time from illness onset to death must be addressed. Second, the observed dataset of reported cases represents only a proportion of all infected individuals and there can be a substantial number of asymptomatic and mildly infected individuals who are never diagnosed. Third, ascertainment bias and risk of death among all those infected would be smaller when estimated using shorter virus detection windows and less sensitive diagnostic laboratory tests. In the ongoing COVID-19 epidemic, health authorities must cope with the uncertainty in the risk of death from COVID-19, and high-risk individuals should be identified using approaches that can address the abovementioned three problems. Although COVID-19 involves mostly mild infections among the majority of the general population, the risk of death among young adults is higher than that of seasonal influenza, and elderly with underlying comorbidities require additional care.

SELECTION OF CITATIONS
SEARCH DETAIL