Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Commun Biol ; 5(1): 516, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1947507

ABSTRACT

The development of an in vitro cell model that can be used to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research is expected. Here we conducted infection experiments in bronchial organoids (BO) and an BO-derived air-liquid interface model (BO-ALI) using 8 SARS-CoV-2 variants. The infection efficiency in BO-ALI was more than 1,000 times higher than that in BO. Among the bronchial epithelial cells, we found that ciliated cells were infected with the virus, but basal cells were not. Ciliated cells died 7 days after the viral infection, but basal cells survived after the viral infection and differentiated into ciliated cells. Fibroblast growth factor 10 signaling was essential for this differentiation. These results indicate that BO and BO-ALI may be used not only to evaluate the cell response to SARS-CoV-2 and coronavirus disease 2019 (COVID-19) therapeutic agents, but also for airway regeneration studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Bronchi , Humans , Organoids
2.
Commun Biol ; 5(1): 473, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1864774

ABSTRACT

In the ongoing COVID-19 pandemic, rapid and sensitive diagnosis of viral infection is a critical deterrent to the spread of SARS-CoV-2. To this end, we developed an automated amplification-free digital RNA detection platform using CRISPR-Cas13a and microchamber device (opn-SATORI), which automatically completes a detection process from sample mixing to RNA quantification in clinical specimens within ~9 min. Using the optimal Cas13a enzyme and magnetic beads technology, opn-SATORI detected SARS-CoV-2 genomic RNA with a LoD of < 6.5 aM (3.9 copies µL-1), comparable to RT-qPCR. Additionally, opn-SATORI discriminated between SARS-CoV-2 variants of concern, including alpha, delta, and omicron, with 98% accuracy. Thus, opn-SATORI can serve as a rapid and convenient diagnostic platform for identifying several types of viral infections.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323006

ABSTRACT

Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial activity. They just avoid direct contact between the person and the biological agent. Therefore, healthy people can get infected through contact of the contaminated material surfaces and this equipment constitute an increasing source of infectious biological waste. Furthermore, infected people can transmit microbial infections easily because the protective equipment do not inactivate the microbial load generated while breathing, sneezing, or coughing. In this regard, the goal of this work consisted of fabricating a transparent face shield with intrinsic antimicrobial activity that could provide extra-protection against infectious agents and reduce the generation of infectious waste. Thus, a single-use transparent antimicrobial face shield composed of polyethylene terephthalate and an antimicrobial coating of benzalkonium chloride has been developed for the next generation of facial protective equipment. The antimicrobial coating was analyzed by atomic force microscopy and field emission scanning electron microscopy with elemental analysis. This is the first facial transparent protective material capable of inactivating enveloped viruses such as SARS-CoV-2 in less than one minute of contact, and the methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Bacterial infections contribute to severe pneumonia associated with the SARS-CoV-2 infection, and their resistance to antibiotics is increasing. Our extra protective broad-spectrum antimicrobial composite material could also be applied for the fabrication of other facial protective tools such as such as goggles, helmets, plastic masks and space separation screens used for counters or vehicles. This low-cost technology would be very useful to combat the current COVID-19 pandemic and protect health care workers from multidrug-resistant infections in developed and underdeveloped countries.

4.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1542581

ABSTRACT

The Coronavirus Disease (COVID-19) pandemic is demanding the rapid action of the authorities and scientific community in order to find new antimicrobial solutions that could inactivate the pathogen SARS-CoV-2 that causes this disease. Gram-positive bacteria contribute to severe pneumonia associated with COVID-19, and their resistance to antibiotics is exponentially increasing. In this regard, non-woven fabrics are currently used for the fabrication of infection prevention clothing such as face masks, caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons and shoe covers as protective tools against viral and bacterial infections. However, these non-woven fabrics are made of materials that do not exhibit intrinsic antimicrobial activity. Thus, we have here developed non-woven fabrics with antimicrobial coatings of cranberry extracts capable of inactivating enveloped viruses such as SARS-CoV-2 and the bacteriophage phi 6 (about 99% of viral inactivation in 1 min of viral contact), and two multidrug-resistant bacteria: the methicillin-resistant Staphylococcus aureus and the methicillin-resistant Staphylococcus epidermidis. The morphology, thermal and mechanical properties of the produced filters were characterized by optical and electron microscopy, differential scanning calorimetry, thermogravimetry and dynamic mechanical thermal analysis. The non-toxicity of these advanced technologies was ensured using a Caenorhabditis elegans in vivo model. These results open up a new prevention path using natural and biodegradable compounds for the fabrication of infection prevention clothing in the current COVID-19 pandemic and microbial resistant era.


Subject(s)
Drug Resistance, Multiple, Bacterial/drug effects , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Textiles , Vaccinium macrocarpon/chemistry , Animals , Anti-Bacterial Agents , Anti-Infective Agents , Bacteriophage phi 6/drug effects , COVID-19/prevention & control , Caenorhabditis elegans/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects
5.
ACS Omega ; 6(36): 23495-23503, 2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1404876

ABSTRACT

Infection prevention clothing is becoming an essential protective tool in the current pandemic, especially because now we know that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can easily infect humans in poorly ventilated indoor spaces. However, commercial infection prevention clothing is made of fabrics that are not capable of inactivating the virus. Therefore, viral infections of symptomatic and asymptomatic individuals wearing protective clothing such as masks can occur through aerosol transmission or by contact with the contaminated surfaces of the masks, which are suspected as an increasing source of highly infectious biological waste. Herein, we report an easy fabrication method of a novel antiviral non-woven fabric containing polymer filaments that were coated with solidified hand soap. This extra protective fabric is capable of inactivating enveloped viruses such as SARS-CoV-2 and phage Φ6 within 1 min of contact. In this study, this antiviral fabric was used to fabricate an antiviral face mask and did not show any cytotoxic effect in human keratinocyte HaCaT cells. Furthermore, this antiviral non-woven fabric could be used for the fabrication of other infection prevention clothing such as caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons, and shoe covers. Therefore, this low-cost technology could provide a wide range of infection-protective tools to combat COVID-19 and future pandemics in developed and underdeveloped countries.

6.
Int J Mol Sci ; 22(17)2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1390656

ABSTRACT

Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial activity. They just avoid direct contact between the person and the biological agent. Therefore, healthy people can become infected through contact of the contaminated material surfaces and this equipment constitute an increasing source of infectious biological waste. Furthermore, infected people can transmit microbial infections easily because the protective equipment do not inactivate the microbial load generated while breathing, sneezing or coughing. In this regard, the goal of this work consisted of fabricating a transparent face shield with intrinsic antimicrobial activity that could provide extra-protection against infectious agents and reduce the generation of infectious waste. Thus, a single-use transparent antimicrobial face shield composed of polyethylene terephthalate and an antimicrobial coating of benzalkonium chloride has been developed for the next generation of facial protective equipment. The antimicrobial coating was analyzed by atomic force microscopy and field emission scanning electron microscopy with elemental analysis. This is the first facial transparent protective material capable of inactivating enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than one minute of contact, and the methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Bacterial infections contribute to severe pneumonia associated with the SARS-CoV-2 infection, and their resistance to antibiotics is increasing. Our extra protective broad-spectrum antimicrobial composite material could also be applied for the fabrication of other facial protective tools such as such as goggles, helmets, plastic masks and space separation screens used for counters or vehicles. This low-cost technology would be very useful to combat the current pandemic and protect health care workers from multidrug-resistant infections in developed and underdeveloped countries.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Personal Protective Equipment , Anti-Infective Agents/chemistry , Bacteriophage phi 6/drug effects , Benzalkonium Compounds/chemistry , Benzalkonium Compounds/pharmacology , COVID-19/pathology , COVID-19/virology , Disk Diffusion Antimicrobial Tests , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Polyethylene Terephthalates/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Staphylococcus epidermidis/drug effects
7.
PLoS One ; 16(1): e0244885, 2021.
Article in English | MEDLINE | ID: covidwho-1251754

ABSTRACT

Human influenza virus infections occur annually worldwide and are associated with high morbidity and mortality. Hence, development of novel anti-influenza drugs is urgently required. Rice Power® extract developed by the Yushin Brewer Co. Ltd. is a novel aqueous extract of rice obtained via saccharization and fermentation with various microorganisms, such as Aspergillus oryzae, yeast [such as Saccharomyces cerevisiae], and lactic acid bacteria, possessing various biological and pharmacological properties. In our previous experimental screening with thirty types of Rice Power® extracts, we observed that the 30th Rice Power® (Y30) extract promoted the survival of influenza A virus-infected Madin-Darby canine kidney (MDCK) cells. Therefore, to identify compounds for the development of novel anti-influenza drugs, we aimed to investigate whether the Y30 extract exhibits anti-influenza A virus activity. In the present study, we demonstrated that the Y30 extract strongly promoted the survival of influenza A H1N1 Puerto Rico 8/34 (A/PR/8/34), California 7/09, or H3N2 Aichi 2/68 (A/Aichi/2/68) viruses-infected MDCK cells and inhibited A/PR/8/34 or A/Aichi/2/68 viruses infection and growth in the co-treatment and pre-infection experiments. The pre-treatment of Y30 extract on MDCK cells did not induce anti-influenza activity in the cell. The Y30 extract did not significantly affect influenza A virus hemagglutination, and neuraminidase and RNA-dependent RNA polymerase activities. Interestingly, the electron microscopy experiment revealed that the Y30 extract disrupts the integrity of influenza A virus particles by permeabilizing the viral membrane envelope, suggesting that Y30 extract has a direct virucidal effect against influenza A virus. Furthermore, we observed that compared to the ethyl acetate (EtOAc) extract, the water extract of Y30 extract considerably promoted the survival of cells infected with A/PR/8/34 virus. These results indicated that more anti-influenza components were present in the water extract of Y30 extract than in the EtOAc extract. Our results highlight the potential of a rice extract fermented with A. oryzae and S. cerevisiae as an anti-influenza medicine and a drug source for the development of anti-influenza compounds.


Subject(s)
Aspergillus oryzae/metabolism , Influenza A virus/drug effects , Oryza/chemistry , Oryza/microbiology , Plant Extracts/pharmacology , Saccharomyces cerevisiae/metabolism , Water/chemistry , Acetates/chemistry , Animals , Antiviral Agents/pharmacology , Dogs , Fermentation , Influenza A virus/growth & development , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Microbial Viability/drug effects
8.
Cell Rep ; 36(2): 109385, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1283972

ABSTRACT

Administration of convalescent plasma or neutralizing monoclonal antibodies (mAbs) is a potent therapeutic option for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, SARS-CoV-2 variants with mutations in the spike protein have emerged in many countries. To evaluate the efficacy of neutralizing antibodies induced in convalescent patients against emerging variants, we isolate anti-spike mAbs from two convalescent COVID-19 patients infected with prototypic SARS-CoV-2 by single-cell sorting of immunoglobulin-G-positive (IgG+) memory B cells. Anti-spike antibody induction is robust in these patients, and five mAbs have potent neutralizing activities. The efficacy of most neutralizing mAbs and convalescent plasma samples is maintained against B.1.1.7 and mink cluster 5 variants but is significantly decreased against variants B.1.351 from South Africa and P.1 from Brazil. However, mAbs with a high affinity for the receptor-binding domain remain effective against these neutralization-resistant variants. Rapid spread of these variants significantly impacts antibody-based therapies and vaccine strategies against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/immunology , COVID-19/virology , Cell Line , HEK293 Cells , Humans , Immunization, Passive , Male , Mutation , Neutralization Tests , Protein Domains , Spike Glycoprotein, Coronavirus/genetics
9.
Commun Biol ; 4(1): 476, 2021 04 19.
Article in English | MEDLINE | ID: covidwho-1193604

ABSTRACT

CRISPR-based nucleic-acid detection is an emerging technology for molecular diagnostics. However, these methods generally require several hours and could cause amplification errors, due to the pre-amplification of target nucleic acids to enhance the detection sensitivity. Here, we developed a platform that allows "CRISPR-based amplification-free digital RNA detection (SATORI)", by combining CRISPR-Cas13-based RNA detection and microchamber-array technologies. SATORI detected single-stranded RNA targets with maximal sensitivity of ~10 fM in <5 min, with high specificity. Furthermore, the simultaneous use of multiple different guide RNAs enhanced the sensitivity, thereby enabling the detection of the SARS-CoV-2 N-gene RNA at ~5 fM levels. Therefore, we hope SATORI will serve as a powerful class of accurate and rapid diagnostics.


Subject(s)
COVID-19/diagnosis , CRISPR-Cas Systems , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , RNA/genetics , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , Humans , RNA/metabolism , RNA, Viral/metabolism , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity
10.
iScience ; 24(5): 102428, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1188663

ABSTRACT

Genetic differences are a primary reason for differences in the susceptibility and severity of COVID-19. As induced pluripotent stem (iPS) cells maintain the genetic information of the donor, they can be used to model individual differences in SARS-CoV-2 infection in vitro. We found that human iPS cells expressing the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) (ACE2-iPS cells) can be infected w SARS-CoV-2. In infected ACE2-iPS cells, the expression of SARS-CoV-2 nucleocapsid protein, budding of viral particles, and production of progeny virus, double membrane spherules, and double-membrane vesicles were confirmed. We performed SARS-CoV-2 infection experiments on ACE2-iPS/ embryonic stem (ES) cells from eight individuals. Male iPS/ES cells were more capable of producing the virus compared with female iPS/ES cells. These findings suggest that ACE2-iPS cells can not only reproduce individual differences in SARS-CoV-2 infection in vitro but also are a useful resource to clarify the causes of individual differences in COVID-19 due to genetic differences.

11.
Experimental Medicine ; 39(2):22-28, 2021.
Article in Japanese | YODOSHA | ID: covidwho-1115712
12.
Polymers (Basel) ; 13(2)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1016218

ABSTRACT

Face masks have globally been accepted to be an effective protective tool to prevent bacterial and viral transmission, especially against indoor aerosol transmission. However, commercial face masks contain filters that are made of materials that are not capable of inactivating either SARS-CoV-2 or multidrug-resistant bacteria. Therefore, symptomatic and asymptomatic individuals can infect other people even if they wear them because some viable viral or bacterial loads can escape from the masks. Furthermore, viral or bacterial contact transmission can occur after touching the mask, which constitutes an increasing source of contaminated biological waste. Additionally, bacterial pathogens contribute to the SARS-CoV-2-mediated pneumonia disease complex, and their resistance to antibiotics in pneumonia treatment is increasing at an alarming rate. In this regard, herein, we report the development of a non-woven face mask filter fabricated with a biofunctional coating of benzalkonium chloride that is capable of inactivating more than 99% of SARS-CoV-2 particles in one minute of contact, and the life-threatening methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis (normalized antibacterial halos of 0.52 ± 0.04 and 0.72 ± 0.04, respectively). Nonetheless, despite the results obtained, further studies are needed to ensure the safety and correct use of this technology for the mass production and commercialization of this broad-spectrum antimicrobial face mask filter. Our novel protective non-woven face mask filter would be useful for many healthcare workers and researchers working in this urgent and challenging field.

SELECTION OF CITATIONS
SEARCH DETAIL