Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Biomol NMR Assign ; 16(1): 17-25, 2022 04.
Article in English | MEDLINE | ID: covidwho-1827073

ABSTRACT

The ongoing pandemic of the respiratory disease COVID-19 is caused by the SARS-CoV-2 (SCoV2) virus. SCoV2 is a member of the Betacoronavirus genus. The 30 kb positive sense, single stranded RNA genome of SCoV2 features 5'- and 3'-genomic ends that are highly conserved among Betacoronaviruses. These genomic ends contain structured cis-acting RNA elements, which are involved in the regulation of viral replication and translation. Structural information about these potential antiviral drug targets supports the development of novel classes of therapeutics against COVID-19. The highly conserved branched stem-loop 5 (SL5) found within the 5'-untranslated region (5'-UTR) consists of a basal stem and three stem-loops, namely SL5a, SL5b and SL5c. Both, SL5a and SL5b feature a 5'-UUUCGU-3' hexaloop that is also found among Alphacoronaviruses. Here, we report the extensive 1H, 13C and 15N resonance assignment of the 37 nucleotides (nts) long sequence spanning SL5b and SL5c (SL5b + c), as basis for further in-depth structural studies by solution NMR spectroscopy.


Subject(s)
COVID-19 , SARS-CoV-2 , 5' Untranslated Regions , Humans , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular
2.
ChemPhysChem ; 23(4):e202200048, 2022.
Article in English | Wiley | ID: covidwho-1704901

ABSTRACT

The Cover Feature illustrates how artifact-free 2D NOE correlations between labile protons can be obtained from an extended Hadamard encoding/decoding matrix, which supersedes problems in conventional Hadamard schemes. The sensitivity-enhancing abilities of extended Hadamard encoding operating in conjunction with solvent repolarization mechanisms are demonstrated on GHz NMR studies on SARS-CoV-2 RNA fragments. More information can be found in the Article by Lucio Frydman and co-workers.

3.
Chemphyschem ; 23(4): e202100704, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1589144

ABSTRACT

Hadamard encoded saturation transfer can significantly improve the efficiency of NOE-based NMR correlations from labile protons in proteins, glycans and RNAs, increasing the sensitivity of cross-peaks by an order of magnitude and shortening experimental times by ≥100-fold. These schemes, however, fail when tackling correlations within a pool of labile protons - for instance imino-imino correlations in RNAs or amide-amide correlations in proteins. Here we analyze the origin of the artifacts appearing in these experiments and propose a way to obtain artifact-free correlations both within the labile pool as well as between labile and non-labile 1 Hs, while still enjoying the gains arising from Hadamard encoding and solvent repolarizations. The principles required for implementing what we define as the extended Hadamard scheme are derived, and its clean, artifact-free, sensitivity-enhancing performance is demonstrated on RNA fragments derived from the SARS-CoV-2 genome. Sensitivity gains per unit time approaching an order of magnitude are then achieved in both imino-imino and imino-amino/aromatic protons 2D correlations; similar artifact-free sensitivity gains can be observed when carrying out extended Hadamard encodings of 3D NOESY/HSQC-type experiments. The resulting spectra reveal significantly more correlations than their conventionally acquired counterparts, which can support the spectral assignment and secondary structure determination of structured RNA elements.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , RNA
5.
J Am Chem Soc ; 143(13): 4942-4948, 2021 04 07.
Article in English | MEDLINE | ID: covidwho-1387161

ABSTRACT

Multidimensional NOESY experiments targeting correlations between exchangeable imino and amino protons provide valuable information about base pairing in nucleic acids. It has been recently shown that the sensitivity of homonuclear correlations involving RNA's labile imino protons can be significantly enhanced, by exploiting the repolarization brought about by solvent exchanges. Homonuclear correlations, however, are of limited spectral resolution, and usually incapable of tackling relatively large homopolymers with repeating structures like RNAs. This study presents a heteronuclear-resolved version of those NOESY experiments, in which magnetization transfers between the aqueous solvent and the nucleic acid protons are controlled by selecting specific chemical shift combinations of a coupled 1H-15N spin pair. This selective control effectively leads to a pseudo-3D version of HSQC-NOESY, but with cross-peaks enhanced by ∼2-5× as compared with conventional 2D NOESY counterparts. The enhanced signal sensitivity as well as access to both 15N-1H and 1H-1H NOESY dimensions can greatly facilitate RNA assignments and secondary structure determinations, as demonstrated here with the analysis of genome fragments derived from the SARS-CoV-2 virus.


Subject(s)
Magnetic Phenomena , Magnetic Resonance Spectroscopy , RNA, Viral/chemistry , SARS-CoV-2/genetics , Temperature
6.
Angew Chem Int Ed Engl ; 60(21): 11884-11891, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1384108

ABSTRACT

2D NOESY plays a central role in structural NMR spectroscopy. We have recently discussed methods that rely on solvent-driven exchanges to enhance NOE correlations between exchangeable and non-exchangeable protons in nucleic acids. Such methods, however, fail when trying to establish connectivities within pools of labile protons. This study introduces an alternative that also enhances NOEs between such labile sites, based on encoding a priori selected peaks by selective saturations. The resulting selective magnetization transfer (SMT) experiment proves particularly useful for enhancing the imino-imino cross-peaks in RNAs, which is a first step in the NMR resolution of these structures. The origins of these enhancements are discussed, and their potential is demonstrated on RNA fragments derived from the genome of SARS-CoV-2, recorded with better sensitivity and an order of magnitude faster than conventional 2D counterparts.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Protons , RNA, Viral/analysis , SARS-CoV-2/chemistry , Magnetic Phenomena , RNA, Viral/chemistry
7.
Angew Chem Weinheim Bergstr Ger ; 133(21): 11991-11998, 2021 May 17.
Article in English | MEDLINE | ID: covidwho-1381836

ABSTRACT

2D NOESY plays a central role in structural NMR spectroscopy. We have recently discussed methods that rely on solvent-driven exchanges to enhance NOE correlations between exchangeable and non-exchangeable protons in nucleic acids. Such methods, however, fail when trying to establish connectivities within pools of labile protons. This study introduces an alternative that also enhances NOEs between such labile sites, based on encoding a priori selected peaks by selective saturations. The resulting selective magnetization transfer (SMT) experiment proves particularly useful for enhancing the imino-imino cross-peaks in RNAs, which is a first step in the NMR resolution of these structures. The origins of these enhancements are discussed, and their potential is demonstrated on RNA fragments derived from the genome of SARS-CoV-2, recorded with better sensitivity and an order of magnitude faster than conventional 2D counterparts.

8.
J Am Chem Soc ; 143(13): 4942-4948, 2021 04 07.
Article in English | MEDLINE | ID: covidwho-1157892

ABSTRACT

Multidimensional NOESY experiments targeting correlations between exchangeable imino and amino protons provide valuable information about base pairing in nucleic acids. It has been recently shown that the sensitivity of homonuclear correlations involving RNA's labile imino protons can be significantly enhanced, by exploiting the repolarization brought about by solvent exchanges. Homonuclear correlations, however, are of limited spectral resolution, and usually incapable of tackling relatively large homopolymers with repeating structures like RNAs. This study presents a heteronuclear-resolved version of those NOESY experiments, in which magnetization transfers between the aqueous solvent and the nucleic acid protons are controlled by selecting specific chemical shift combinations of a coupled 1H-15N spin pair. This selective control effectively leads to a pseudo-3D version of HSQC-NOESY, but with cross-peaks enhanced by ∼2-5× as compared with conventional 2D NOESY counterparts. The enhanced signal sensitivity as well as access to both 15N-1H and 1H-1H NOESY dimensions can greatly facilitate RNA assignments and secondary structure determinations, as demonstrated here with the analysis of genome fragments derived from the SARS-CoV-2 virus.


Subject(s)
Magnetic Phenomena , Magnetic Resonance Spectroscopy , RNA, Viral/chemistry , SARS-CoV-2/genetics , Temperature
9.
Angew Chem Int Ed Engl ; 60(21): 11884-11891, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1121482

ABSTRACT

2D NOESY plays a central role in structural NMR spectroscopy. We have recently discussed methods that rely on solvent-driven exchanges to enhance NOE correlations between exchangeable and non-exchangeable protons in nucleic acids. Such methods, however, fail when trying to establish connectivities within pools of labile protons. This study introduces an alternative that also enhances NOEs between such labile sites, based on encoding a priori selected peaks by selective saturations. The resulting selective magnetization transfer (SMT) experiment proves particularly useful for enhancing the imino-imino cross-peaks in RNAs, which is a first step in the NMR resolution of these structures. The origins of these enhancements are discussed, and their potential is demonstrated on RNA fragments derived from the genome of SARS-CoV-2, recorded with better sensitivity and an order of magnitude faster than conventional 2D counterparts.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Protons , RNA, Viral/analysis , SARS-CoV-2/chemistry , Magnetic Phenomena , RNA, Viral/chemistry
10.
Nucleic Acids Res ; 48(22): 12415-12435, 2020 12 16.
Article in English | MEDLINE | ID: covidwho-917705

ABSTRACT

The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.


Subject(s)
COVID-19/prevention & control , Magnetic Resonance Spectroscopy/methods , Nucleic Acid Conformation , RNA, Viral/chemistry , SARS-CoV-2/genetics , 3' Untranslated Regions/genetics , Base Sequence , COVID-19/epidemiology , COVID-19/virology , Frameshifting, Ribosomal/genetics , Genome, Viral/genetics , Humans , Models, Molecular , Pandemics , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL