Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
EBioMedicine ; 79: 103997, 2022 May.
Article in English | MEDLINE | ID: covidwho-1977198

ABSTRACT

BACKGROUND: SARS-CoV-2 Omicron variant is rampantly spreading across the globe. We assessed the pathogenicity and immune response generated by BA.1.1 sub-lineage of SARS-CoV-2 [Omicron (R346K) variant] in 5 to 6-week old Syrian hamsters and compared the observations with that of Delta variant infection. METHODS: Virus shedding, organ viral load, lung disease and immune response generated in hamsters were sequentially assessed. FINDINGS: The disease characteristics of the Omicron (R346K) variant were found to be similar to that of the Delta variant infection in hamsters like viral replication in the respiratory tract and interstitial pneumonia. The Omicron (R346K) infected hamsters demonstrated lesser body weight reduction and viral RNA load in the throat swab and nasal wash samples in comparison to the Delta variant infection. The viral load in the lungs and nasal turbinate samples and the lung disease severity of the Omicron (R346K) infected hamsters were found comparable with that of the Delta variant infected hamsters. Neutralizing antibody response against Omicron (R346K) variant was detected from day 5 and the cross-neutralization titre of the sera against other variants showed severe reduction ie., 7 fold reduction against Alpha and no titers against B.1, Beta and Delta. INTERPRETATION: This preliminary data shows that Omicron (R346K) variant infection can produce moderate to severe lung disease similar to that of the Delta variant and the neutralizing antibodies produced in response to Omicron (R346K) variant infection shows poor neutralizing ability against other co-circulating SARS-CoV-2 variants like Delta which necessitates caution as it may lead to increased cases of reinfection. FUNDING: This study was supported by Indian Council of Medical Research as an intramural grant (COVID-19) to ICMR-National Institute of Virology, Pune.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Cricetinae , Humans , India , Mesocricetus , Virulence
3.
J Microbiol Immunol Infect ; 2022 Jul 02.
Article in English | MEDLINE | ID: covidwho-1914641

ABSTRACT

BACKGROUND: During October 2020, Delta variant was detected for the first time in India and rampantly spread across the globe. It also led to second wave of pandemic in India which affected millions of people. However, there is limited information pertaining to the SARS-CoV-2 strain infecting the children in India. METHODS: Here, we assessed the SARS-CoV-2 lineages circulating in the pediatric population of India during the second wave of the pandemic. Clinical and demographic details linked with the nasopharyngeal/oropharyngeal swabs (NPS/OPS) collected from SARS-CoV-2 cases (n = 583) aged 0-18 year and tested positive by real-time RT-PCR were retrieved from March to June 2021. RESULTS: Symptoms were reported among 37.2% of patients and 14.8% reported to be hospitalized. The E gene CT value had significant statistical difference at the point of sample collection when compared to that observed in the sequencing laboratory. Out of these 512 sequences 372 were VOCs, 51 were VOIs. Most common lineages observed were Delta, followed by Kappa, Alpha and B.1.36, seen in 65.82%, 9.96%, 6.83% and 4.68%, respectively in the study population. CONCLUSION: Overall, it was observed that Delta strain was the leading cause of SARS-CoV-2 infection in Indian children during the second wave of the pandemic. We emphasize on the need of continuous genomic surveillance in SARS-CoV-2 infection even amongst children.

4.
Front Microbiol ; 13: 888195, 2022.
Article in English | MEDLINE | ID: covidwho-1911066

ABSTRACT

Background: During the second wave of the COVID-19 pandemic, outbreaks of Zika were reported from Kerala, Uttar Pradesh, and Maharashtra, India in 2021. The Dengue and Chikungunya negative samples were retrospectively screened to determine the presence of the Zika virus from different geographical regions of India. Methods: During May to October 2021, the clinical samples of 1475 patients, across 13 states and a union territory of India were screened and re-tested for Dengue, Chikungunya and Zika by CDC Trioplex Real time RT-PCR. The Zika rRTPCR positive samples were further screened with anti-Zika IgM and Plaque Reduction Neutralization Test. Next generation sequencing was used for further molecular characterization. Results: The positivity was observed for Zika (67), Dengue (121), and Chikungunya (10) amongst screened cases. The co-infections of Dengue/Chikungunya, Dengue/Zika, and Dengue/Chikungunya/Zika were also observed. All Zika cases were symptomatic with fever (84%) and rash (78%) as major presenting symptoms. Of them, four patients had respiratory distress, one presented with seizures, and one with suspected microcephaly at birth. The Asian Lineage of Zika and all four serotypes of Dengue were found in circulation. Conclusion: Our study indicates the spread of the Zika virus to several states of India and an urgent need to strengthen its surveillance.

9.
Viruses ; 14(3)2022 02 24.
Article in English | MEDLINE | ID: covidwho-1737033

ABSTRACT

Due to the failure of virus isolation of the Omicron variant in Vero CCL-81 from the clinical specimens of COVID-19 cases, an initial in vivo and subsequent in vitro approach was utilized for the isolation of the virus. A total of 74 oropharyngeal/nasopharyngeal specimens were collected from SARS-CoV-2 positive international travellers and a contact case at Delhi and Mumbai, India. All the specimens were sequenced using next-generation sequencing and simultaneously inoculated onto Vero CCL-81 cells for virus isolation. Subsequently, two omicron positive specimens were inoculated into Syrian hamsters for two passages. The initial passage of the positive hamster specimens was inoculated onto Vero CCL-81 cells. The clinical specimens, hamster specimens, and Vero CCL-81 passages were sequenced to assess the mutational changes in different host species. The replication of the Omicron variant in hamsters was confirmed with the presence of a high viral load in nasal turbinate and lung specimens of both passages. The successful isolation of the virus from hamster specimens with Vero CCL-81 was observed with cytopathic effect in infected cells and high viral load in the cell suspension. The genome analysis revealed the presence of L212C mutation, Tyrosine 69 deletion, and C25000T nucleotide change in spike gene of hamster passage sequences and an absence of V17I mutation in E gene in hamster passage sequences, unlike human clinical specimen and Vero CCL-81 passages. No change was observed in the furin cleavage site in any of the specimen sequences, suggesting intact pathogenicity of the virus isolate. Our data demonstrated successful isolation of the Omicron variant with the in vivo method first followed by in vitro method. The virus isolate could be used in the future to explore different aspects of the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Cricetinae , Genomics , Humans , SARS-CoV-2/genetics , Vero Cells
10.
Front Public Health ; 10: 818545, 2022.
Article in English | MEDLINE | ID: covidwho-1731870

ABSTRACT

We report here a Nipah virus (NiV) outbreak in Kozhikode district of Kerala state, India, which had caused fatal encephalitis in a 12-year-old boy and the outbreak response, which led to the successful containment of the disease and the related investigations. Quantitative real-time reverse transcription (RT)-PCR, ELISA-based antibody detection, and whole genome sequencing (WGS) were performed to confirm the NiV infection. Contacts of the index case were traced and isolated based on risk categorization. Bats from the areas near the epicenter of the outbreak were sampled for throat swabs, rectal swabs, and blood samples for NiV screening by real-time RT-PCR and anti-NiV bat immunoglobulin G (IgG) ELISA. A plaque reduction neutralization test was performed for the detection of neutralizing antibodies. Nipah viral RNA could be detected from blood, bronchial wash, endotracheal (ET) secretion, and cerebrospinal fluid (CSF) and anti-NiV immunoglobulin M (IgM) antibodies from the serum sample of the index case. Rapid establishment of an onsite NiV diagnostic facility and contact tracing helped in quick containment of the outbreak. NiV sequences retrieved from the clinical specimen of the index case formed a sub-cluster with the earlier reported Nipah I genotype sequences from India with more than 95% similarity. Anti-NiV IgG positivity could be detected in 21% of Pteropus medius (P. medius) and 37.73% of Rousettus leschenaultia (R. leschenaultia). Neutralizing antibodies against NiV could be detected in P. medius. Stringent surveillance and awareness campaigns need to be implemented in the area to reduce human-bat interactions and minimize spillover events, which can lead to sporadic outbreaks of NiV.


Subject(s)
COVID-19 , Nipah Virus , Child , Disease Outbreaks , Humans , Male , Nipah Virus/genetics , Pandemics , SARS-CoV-2
12.
Indian J Med Res ; 151(2 & 3): 200-209, 2020.
Article in English | MEDLINE | ID: covidwho-1726321

ABSTRACT

Background & objectives: Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally affected 195 countries. In India, suspected cases were screened for SARS-CoV-2 as per the advisory of the Ministry of Health and Family Welfare. The objective of this study was to characterize SARS-CoV-2 sequences from three identified positive cases as on February 29, 2020. Methods: Throat swab/nasal swab specimens for a total of 881 suspected cases were screened by E gene and confirmed by RdRp (1), RdRp (2) and N gene real-time reverse transcription-polymerase chain reactions and next-generation sequencing. Phylogenetic analysis, molecular characterization and prediction of B- and T-cell epitopes for Indian SARS-CoV-2 sequences were undertaken. Results: Three cases with a travel history from Wuhan, China, were confirmed positive for SARS-CoV-2. Almost complete (29,851 nucleotides) genomes of case 1, case 3 and a fragmented genome for case 2 were obtained. The sequences of Indian SARS-CoV-2 though not identical showed high (~99.98%) identity with Wuhan seafood market pneumonia virus (accession number: NC 045512). Phylogenetic analysis showed that the Indian sequences belonged to different clusters. Predicted linear B-cell epitopes were found to be concentrated in the S1 domain of spike protein, and a conformational epitope was identified in the receptor-binding domain. The predicted T-cell epitopes showed broad human leucocyte antigen allele coverage of A and B supertypes predominant in the Indian population. Interpretation & conclusions: The two SARS-CoV-2 sequences obtained from India represent two different introductions into the country. The genetic heterogeneity is as noted globally. The identified B- and T-cell epitopes may be considered suitable for future experiments towards the design of vaccines and diagnostics. Continuous monitoring and analysis of the sequences of new cases from India and the other affected countries would be vital to understand the genetic evolution and rates of substitution of the SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Genome, Viral , COVID-19 , Coronavirus Infections , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Humans , India , Models, Molecular , Pandemics , Phylogeny , Pneumonia, Viral , Protein Structure, Tertiary , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
13.
J Med Virol ; 94(7): 3404-3409, 2022 07.
Article in English | MEDLINE | ID: covidwho-1712144

ABSTRACT

International travel has been the major source for the rapid spread of new SARS-CoV-2 variants across the globe. During SARS-CoV-2 genomic surveillance, a total of 212 SARS-CoV-2 positive clinical specimens were sequenced using next-generation sequencing. A complete SARS-CoV-2 genome could be retrieved from 90 clinical specimens. Of them, 14 sequences belonged to the Eta variant from clinical specimens of international travelers (n = 12) and local residents (n = 2) of India, and 76 belonged to other SARS-CoV-2 variants. Of all the Eta-positive specimens, the virus isolates were obtained from the clinical specimens of six international travelers. Many variants of interest have been found to cause substantial community transmission or cluster infections. The detection of this variant with lethal E484K mutation across the globe and India necessitates persistent genomic surveillance of the SARS-CoV-2 variants, which would aid in taking preventive action.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing , Humans , Mutation , SARS-CoV-2/genetics
15.
Front Med (Lausanne) ; 8: 781287, 2021.
Article in English | MEDLINE | ID: covidwho-1649347

ABSTRACT

Uttar Pradesh is the densely populated state of India and is the sixth highest COVID-19 affected state with 22,904 deaths recorded on November 12, 2021. Whole-genome sequencing (WGS) is being used as a potential approach to investigate genomic evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In this study, a total of 87 SARS-CoV-2 genomes-49 genomes from the first wave (March 2020 to February 2021) and 38 genomes from the second wave (March 2021 to July 2021) from Eastern Uttar Pradesh (E-UP) were sequenced and analyzed to understand its evolutionary pattern and variants against publicaly available sequences. The complete genome analysis of SARS-CoV-2 during the first wave in E-UP largely reported transmission of G, GR, and GH clades with specific mutations. In contrast, variants of concerns (VOCs) such as Delta (71.0%) followed by Delta AY.1 (21.05%) and Kappa (7.9%) lineages belong to G clade with prominent signature amino acids were introduced in the second wave. Signature substitution at positions S:L452R, S:P681R, and S:D614G were commonly detected in the Delta, Delta AY.1, and Kappa variants whereas S:T19R and S:T478K were confined to Delta and Delta AY.1 variants only. Vaccine breakthrough infections showed unique mutational changes at position S:D574Y in the case of the Delta variant, whereas position S:T95 was conserved among Kappa variants compared to the Wuhan isolate. During the transition from the first to second waves, a shift in the predominant clade from GH to G clade was observed. The identified spike protein mutations in the SARS-CoV-2 genome could be used as the potential target for vaccine and drug development to combat the effects of the COVID-19 disease.

16.
J Infect Public Health ; 15(2): 182-186, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587222

ABSTRACT

BACKGROUND: The emergence of SARS-CoV-2 variants in places where the virus is uncontained poses a global threat from the perspective of public health and vaccine efficacy. Travel has been important factor for the easy spread of SARS-CoV-2 variants worldwide. India has also observed the importation of SARS-CoV-2 variants through international travelers. METHODS: In this study, we have collected the oropharyngeal and nasopharyngeal swab specimens from 58 individuals with travel history from United Arab Emirates (UAE), East, West and South Africa, Qatar, Ukraine and Saudi Arabia arrived in India during February-March 2021. The clinical specimens were initially screened for SARS-CoV-2 using Real time RT-PCR. All the specimens were inoculated on to Vero CCL-81 cells for virus isolation. The viral isolates were further sequenced using Next-Generation Sequencing. RESULTS: All 58 cases were tested positive for SARS-CoV-2 using Real time RT-PCR. Four specimens showed progressive infectivity with fusion of the infected cells with neighboring cells leading to large mass of cells. Replication competent virus was confirmed from culture supernatant of the passage 2 using Real time RT-PCR. Two plaque purified SARS-CoV-2 isolates demonstrated high viral RNA load of 3.8-7.5 × 1011 and 1.1-1.6 × 1011 at passage 4 and 5 respectively. Nucleotide variations along with amino acid changes were also observed among these two isolates at passage 2-5. All four cases were male with no symptoms and co-morbidity. The sequence analysis has shown two different clusters, first cluster with nucleotide deletions in the ORF1ab and the spike, while second cluster with deletions in spike region. The viral isolates demonstrated 99.88-99.96% nucleotide identity with the representative sequences of Beta variant (B.1.351). CONCLUSION: These findings suggest easier transmission of SARS-CoV-2 variants with human mobility through international travel. The isolated Beta variant would be useful to determine the protective efficacy of the currently available and upcoming COVID-19 vaccines in India.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Male , United Arab Emirates
17.
Pathogens ; 10(12)2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1554938

ABSTRACT

The emergence of new severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) has been a global concern. The B.1.1.7 variant of SARS CoV-2 is reported to cause higher transmission. The study investigates the replication cycle and transcriptional pattern of the B.1.1.7 to hypothesis the possible role of different genes in viral replication. It was observed that the B.1.1.7 variant required a longer maturation time. The transcriptional response demonstrated higher expression of ORF6 and ORF8 compared to nucleocapsid transcript till the eclipse period which might influence higher viral replication. The number of infectious viruses titer is higher in the B.1.1.7, despite a lesser copy number than B.1, indicating higher transmissibility. The experimental evidence published linked ORF6 and ORF8 to play important role in replication and we also observed their higher expression. This leads us to hypothesis the possible role of ORF6 and ORF8 in B.1.1.7 higher replication which causes higher transmission.

18.
Vector Borne Zoonotic Dis ; 21(11): 900-909, 2021 11.
Article in English | MEDLINE | ID: covidwho-1532426

ABSTRACT

Background: A wide range of insect-specific viruses (ISVs) have been reported worldwide. There are no studies from India that have reported ISVs. The current study describes the identification of Phasi Charoen-like virus (PCLV) from Aedes aegypti mosquito-pools from six districts of Karnataka state, India. Materials and Methods: During the Chikungunya virus (CHIKV) outbreak in the Bangalore Urban district in 2019, using conventional PCR, it was found that both human and mosquito samples were positive for CHIKV. For retrieve the complete genome sequence, mosquito samples were subjected to next generation sequencing (NGS) analysis and PCLV was also found. During 2019, as part of a vector-borne disease surveillance, we received 50 mosquito pool samples from 6 districts of the state, all of them were subjected to NGS to identify PCLV. Results: The A. aegypti mosquito-pools samples were subjected to the NGS platform that led to identification of an ISV, PCLV. PCLV was identified in 26 A. aegypti mosquito-pools collected from 6 districts. We also found mixed infection of PCLV with the Dengue virus (DENV; genotypes 1 and 3) and CHIKV from five pools. The nucleotide identity for the L gene of Indian PCLV sequences ranged between 97.1% and 98.3% in comparison with the Thailand sequences. Conclusions: To the best of our knowledge, this is the first report of PCLV dual infection with DENV and CHIKV in India. The present study confirms the presence of PCLV in A. aegypti mosquitoes from Karnataka state. The study adds India in the global geographical distribution of PCLV.


Subject(s)
Aedes , Chikungunya virus , RNA Viruses , Animals , Chikungunya virus/genetics , India/epidemiology , Mosquito Vectors
19.
J Microbiol Immunol Infect ; 2021 Nov 03.
Article in English | MEDLINE | ID: covidwho-1514217

ABSTRACT

The B.1.1.7 (Alpha) variant has been detected in Mumbai, India during February 2021. Subsequently, we retrieved 43 sequences from specimens of 51 COVID-19 cases from Mumbai. The sequence analysis revealed that the cases were mainly affected with Alpha variant which suggests its role in community transmission of SARS-CoV-2 in Mumbai, India.

SELECTION OF CITATIONS
SEARCH DETAIL