Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Year range
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331621

ABSTRACT

Post-acute lung sequelae of COVID-19 are challenging many survivors across the world, yet the mechanisms behind are poorly understood. Our results delineate an inflammatory cascade of events occurring along disease progression within fibrovascular niches. It is initiated by endothelial dysfunction, followed by heme scavenging of CD163+ macrophages and production of CCL18. This chemokine synergizes with local CCL21 upregulation to influence the stromal composition favoring endothelial to mesenchymal transition. The local immune response is further modulated via recruitment of CCR7+ T cells into the expanding fibrovascular niche and imprinting an exhausted, T follicular helper like phenotype in these cells. Eventually, this culminates in the formation of tertiary lymphoid structures, further perpetuating chronic inflammation. Thus, our work presents misdirected immune-stromal interaction mechanisms promoting a self-sustained and non-resolving local immune response that extends beyond active viral infection and leads to profound tissue repurposing and chronic inflammation.

2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318102

ABSTRACT

In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as model for moderate COVID-19, we conducted a detailed longitudinal analysis of systemic and pulmonary cellular responses, and corroborated it with datasets from COVID-19 patients. Monocyte-derived macrophages in lungs exerted the earliest and strongest transcriptional response to infection, including induction of pro-inflammatory genes, while epithelial cells showed weak activation. Without evidence for productive infection, endothelial cells reacted, depending on cell subtypes, by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes. Recruitment of cytotoxic T cells as well as emergence of IgM antibodies preceded viral clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters can thus identify cell type-specific effector functions, provide detailed insights into pathomechanisms of COVID-19, and inform therapeutic strategies.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-312513

ABSTRACT

SARS-CoV-2 utilizes the ACE2 transmembrane peptidase as essential cellular entry receptor. Several studies have suggested abundant ACE2 expression in the human lung, inferring strong permissiveness to SARS-CoV-2 infection with resultant alveolar damage and lung injury. Against this expectation, we provide evidence that ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation in the human alveolus. Instead, spectral imaging of ex vivo infected human lungs and COVID-19 autopsy samples depicted that alveolar macrophages were frequently positive for SARS-CoV-2, indicating viral phagocytosis. Single-cell transcriptomics of SARS-CoV-2 infected human lung tissue further revealed strong inflammatory and anti-viral activation responses in macrophages and monocytes, comparable to those induced by MERS-CoV, but with virus-specific gene expression profiles. Collectively, our findings indicate that severe lung injury in COVID-19 likely results from an overwhelming immune activation rather than direct viral damage of the alveolar compartment.Funding: ACH, LES, SH were supported by Berlin University Alliance GC2 Global Health (Corona Virus Pre-Exploration Project). ACH, SH, TW and CD were supported by BMBF (RAPID) and ACH, SH by BMBF (alvBarriereCOVID-19). KH, LB, SL, SH, CD, TW, ACH were funded by BMBF (NFN-COVID 19, Organo-Strat). KH, NS, LES, MW, SH, ADG, CD, TW and ACH were supported by DFG (SFB-TR 84). ACH was supported by BIH, Charite 3R, and Charité-Zeiss MultiDim. KH was supported by BMBF (Camo-COVID-19). MW, NS and SH was supported by BMBF (PROVID). MW and NS was supported by BIH and BMBF (SYMPATH, CAPSyS, NAPKON). BO and DB were funded through the BIH Clinical Single Cell Bioinformatics Pipeline. LB was supported by the BMBF (CoIMMUNE), the DFG (KFO 342) and the IZKF of the Medical Faculty of the WWU. Conflict of Interest: The authors declare no competing interests.Ethical Approval: The study was approved by the ethics committee at the Charité clinic (projects EA2/079/13) and Ärztekammer Westfalen-Lippe and of the Westfälischen Wilhelms-Universität (AZ: 2016-265-f-S). Written informed consent was obtained from all patients.

4.
Nat Commun ; 12(1): 4869, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354100

ABSTRACT

In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as a model for moderate COVID-19, we conduct a detailed longitudinal analysis of systemic and pulmonary cellular responses, and corroborate it with datasets from COVID-19 patients. Monocyte-derived macrophages in lungs exert the earliest and strongest transcriptional response to infection, including induction of pro-inflammatory genes, while epithelial cells show weak alterations. Without evidence for productive infection, endothelial cells react, depending on cell subtypes, by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes. Recruitment of cytotoxic T cells as well as emergence of IgM antibodies precede viral clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters thus identifies cell type-specific effector functions, providing detailed insights into pathomechanisms of COVID-19 and informing therapeutic strategies.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Alveolar Epithelial Cells/immunology , Animals , Cricetinae , Cytokines/genetics , Cytokines/immunology , Endothelial Cells/immunology , Humans , Immunoglobulin M/immunology , Inflammation , Lung/immunology , Macrophages/immunology , Mesocricetus , Monocytes/immunology , SARS-CoV-2/immunology , Signal Transduction , T-Lymphocytes, Cytotoxic/immunology , Toll-Like Receptors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL