Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
BMC Med ; 20(1): 370, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2053904

ABSTRACT

BACKGROUND: West Africa has recorded a relatively higher proportion of asymptomatic coronavirus disease 2019 (COVID-19) cases than the rest of the world, and West Africa-specific host factors could play a role in this discrepancy. Here, we assessed the association between COVID-19 severity among Ghanaians with their immune profiles and ABO blood groups. METHODS: Plasma samples were obtained from Ghanaians PCR-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive individuals. The participants were categorized into symptomatic and asymptomatic cases. Cytokine profiling and antibody quantification were performed using Luminex™ multiplex assay whereas antigen-driven agglutination assay was used to assess the ABO blood groups. Immune profile levels between symptomatic and asymptomatic groups were compared using the two-tailed Mann-Whitney U test. Multiple comparisons of cytokine levels among and between days were tested using Kruskal-Wallis with Dunn's post hoc test. Correlations within ABO blood grouping (O's and non-O's) and between cytokines were determined using Spearman correlations. Logistic regression analysis was performed to assess the association of various cytokines with asymptomatic phenotype. RESULTS: There was a trend linking blood group O to reduced disease severity, but this association was not statistically significant. Generally, symptomatic patients displayed significantly (p < 0.05) higher cytokine levels compared to asymptomatic cases with exception of Eotaxin, which was positively associated with asymptomatic cases. There were also significant (p < 0.05) associations between other immune markers (IL-6, IL-8 and IL-1Ra) and disease severity. Cytokines' clustering patterns differ between symptomatic and asymptomatic cases. We observed a steady decrease in the concentration of most cytokines over time, while anti-SARS-CoV-2 antibody levels were stable for at least a month, regardless of the COVID-19 status. CONCLUSIONS: The findings suggest that genetic background and pre-existing immune response patterns may in part shape the nature of the symptomatic response against COVID-19 in a West African population. This study offers clear directions to be explored further in larger studies.


Subject(s)
COVID-19 , ABO Blood-Group System , Biomarkers , COVID-19/epidemiology , Cytokines , Ghana/epidemiology , Humans , Interleukin 1 Receptor Antagonist Protein , Interleukin-6 , Interleukin-8 , SARS-CoV-2
2.
Lancet ; 399(10340): 2047-2064, 2022 05 28.
Article in English | MEDLINE | ID: covidwho-1864651

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory infection in young children. We previously estimated that in 2015, 33·1 million episodes of RSV-associated acute lower respiratory infection occurred in children aged 0-60 months, resulting in a total of 118 200 deaths worldwide. Since then, several community surveillance studies have been done to obtain a more precise estimation of RSV associated community deaths. We aimed to update RSV-associated acute lower respiratory infection morbidity and mortality at global, regional, and national levels in children aged 0-60 months for 2019, with focus on overall mortality and narrower infant age groups that are targeted by RSV prophylactics in development. METHODS: In this systematic analysis, we expanded our global RSV disease burden dataset by obtaining new data from an updated search for papers published between Jan 1, 2017, and Dec 31, 2020, from MEDLINE, Embase, Global Health, CINAHL, Web of Science, LILACS, OpenGrey, CNKI, Wanfang, and ChongqingVIP. We also included unpublished data from RSV GEN collaborators. Eligible studies reported data for children aged 0-60 months with RSV as primary infection with acute lower respiratory infection in community settings, or acute lower respiratory infection necessitating hospital admission; reported data for at least 12 consecutive months, except for in-hospital case fatality ratio (CFR) or for where RSV seasonality is well-defined; and reported incidence rate, hospital admission rate, RSV positive proportion in acute lower respiratory infection hospital admission, or in-hospital CFR. Studies were excluded if case definition was not clearly defined or not consistently applied, RSV infection was not laboratory confirmed or based on serology alone, or if the report included fewer than 50 cases of acute lower respiratory infection. We applied a generalised linear mixed-effects model (GLMM) to estimate RSV-associated acute lower respiratory infection incidence, hospital admission, and in-hospital mortality both globally and regionally (by country development status and by World Bank Income Classification) in 2019. We estimated country-level RSV-associated acute lower respiratory infection incidence through a risk-factor based model. We developed new models (through GLMM) that incorporated the latest RSV community mortality data for estimating overall RSV mortality. This review was registered in PROSPERO (CRD42021252400). FINDINGS: In addition to 317 studies included in our previous review, we identified and included 113 new eligible studies and unpublished data from 51 studies, for a total of 481 studies. We estimated that globally in 2019, there were 33·0 million RSV-associated acute lower respiratory infection episodes (uncertainty range [UR] 25·4-44·6 million), 3·6 million RSV-associated acute lower respiratory infection hospital admissions (2·9-4·6 million), 26 300 RSV-associated acute lower respiratory infection in-hospital deaths (15 100-49 100), and 101 400 RSV-attributable overall deaths (84 500-125 200) in children aged 0-60 months. In infants aged 0-6 months, we estimated that there were 6·6 million RSV-associated acute lower respiratory infection episodes (4·6-9·7 million), 1·4 million RSV-associated acute lower respiratory infection hospital admissions (1·0-2·0 million), 13 300 RSV-associated acute lower respiratory infection in-hospital deaths (6800-28 100), and 45 700 RSV-attributable overall deaths (38 400-55 900). 2·0% of deaths in children aged 0-60 months (UR 1·6-2·4) and 3·6% of deaths in children aged 28 days to 6 months (3·0-4·4) were attributable to RSV. More than 95% of RSV-associated acute lower respiratory infection episodes and more than 97% of RSV-attributable deaths across all age bands were in low-income and middle-income countries (LMICs). INTERPRETATION: RSV contributes substantially to morbidity and mortality burden globally in children aged 0-60 months, especially during the first 6 months of life and in LMICs. We highlight the striking overall mortality burden of RSV disease worldwide, with one in every 50 deaths in children aged 0-60 months and one in every 28 deaths in children aged 28 days to 6 months attributable to RSV. For every RSV-associated acute lower respiratory infection in-hospital death, we estimate approximately three more deaths attributable to RSV in the community. RSV passive immunisation programmes targeting protection during the first 6 months of life could have a substantial effect on reducing RSV disease burden, although more data are needed to understand the implications of the potential age-shifts in peak RSV burden to older age when these are implemented. FUNDING: EU Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe (RESCEU).


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Child, Preschool , Cost of Illness , Global Health , Hospital Mortality , Hospitalization , Humans , Infant , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Tract Infections/epidemiology
3.
One Health Outlook ; 4(1): 6, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1728882

ABSTRACT

BACKGROUND: In Ghana, the conversion of land to agriculture, especially across the vegetative belt has resulted in fragmented forest landscapes with increased interactions among humans, domestic animals, and wildlife. METHODS: We investigated viruses in bats and rodents, key reservoir hosts for zoonotic viral pathogens, in a small agricultural community in the vegetation belt of Ghana. We also administered questionnaires among the local community members to learn more about people's awareness and perceptions of zoonotic disease risks and the environmental factors and types of activities in which they engage that might influence pathogen transmission from wildlife. RESULTS: Our study detected the RNA from paramyxoviruses and coronaviruses in rodents and bats, including sequences from novel viruses with unknown zoonotic potential. Samples collected from Epomophorus gambianus bats were significantly more likely to be positive for coronavirus RNA during the rainy season, when higher numbers of young susceptible individuals are present in the population. Almost all community members who responded to the questionnaire reported contact with wildlife, especially bats, rodents, and non-human primates in and around their homes and in the agricultural fields. Over half of the respondents were not aware or did not perceive any zoonotic disease risks associated with close contact with animals, such as harvesting and processing animals for food. To address gaps in awareness and mitigation strategies for pathogen transmission risks, we organized community education campaigns using risk reduction and outreach tools focused around living safely with bats and rodents. CONCLUSIONS: These findings expand our knowledge of the viruses circulating in bats and rodents in Ghana and of the beliefs, perceptions, and practices that put community members at risk of zoonotic virus spillover through direct and indirect contact with bats and rodents. This study also highlights the importance of community engagement in research and interventions focused on mitigating risk and living safely with wildlife.

4.
Ghana medical journal ; 55(2 Suppl):51-55, 2021.
Article in English | EuropePMC | ID: covidwho-1710874

ABSTRACT

Summary The COVID-19 pandemic caused by SARS-CoV-2 is an important subject for global health. Ghana experienced low-moderate transmission of the disease when the first case was detected in March 12, 2020 until the middle of July when the number of cases begun to drop. By August 24, 2020, the country's total number of confirmed cases stood at 43,622, with 263 deaths. By the same time, the Noguchi Memorial Institute for Medical Research (NMIMR) of the University of Ghana, the primary testing centre for COVID-19, had tested 285,501 with 28,878 confirmed cases. Due to database gaps, there were initial challenges with timely reporting and feedback to stakeholders during the peak surveillance period. The gaps resulted from mismatches between samples and their accompanying case investigation forms, samples without case investigation forms and vice versa, huge data entry requirements, and delayed test results. However, a revamp in data management procedures, and systems helped to improve the turnaround time for reporting results to all interested parties and partners. Additionally, inconsistencies such as multiple entries and discrepant patient-sample information were resolved by introducing a barcoding electronic capture system. Here, we describe the main challenges with COVID-19 data management and analysis in the laboratory and recommend measures for improvement. Funding The work was supported by the Government of Ghana.

5.
Ghana medical journal ; 55(2 Suppl):48-50, 2021.
Article in English | EuropePMC | ID: covidwho-1710394

ABSTRACT

Summary Objectives To determine the prevalence of SARS-CoV-2 detection among international travellers to Ghana during mandatory quarantine. Design A retrospective cross-sectional study. Setting Air travellers to Ghana on 21st and 22nd March 2020. Participants On 21st and 22nd March 2020, a total of 1,030 returning international travellers were mandatorily quarantined in 15 different hotels in Accra and tested for SARS-CoV-2. All of these persons were included in the study. Main outcome measure Positivity for SARS-CoV-2 by polymerase chain reaction. Results The initial testing at the beginning of quarantine found 79 (7.7%) individuals to be positive for SARS-CoV-2. In the exit screening after 12 to 13 days of quarantine, it was discovered that 26 of those who tested negative for SARS-CoV-2 in the initial screening subsequently tested positive. Conclusions Ghana likely averted an early community spread of COVID-19 through the proactive approach to quarantine international travellers during the early phase of the pandemic. Funding None

6.
Ghana Med J ; 55(2 Suppl): 51-55, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1502653

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is an important subject for global health. Ghana experienced low-moderate transmission of the disease when the first case was detected in March 12, 2020 until the middle of July when the number of cases begun to drop. By August 24, 2020, the country's total number of confirmed cases stood at 43,622, with 263 deaths. By the same time, the Noguchi Memorial Institute for Medical Research (NMIMR) of the University of Ghana, the primary testing centre for COVID-19, had tested 285,501 with 28,878 confirmed cases. Due to database gaps, there were initial challenges with timely reporting and feedback to stakeholders during the peak surveillance period. The gaps resulted from mismatches between samples and their accompanying case investigation forms, samples without case investigation forms and vice versa, huge data entry requirements, and delayed test results. However, a revamp in data management procedures, and systems helped to improve the turnaround time for reporting results to all interested parties and partners. Additionally, inconsistencies such as multiple entries and discrepant patient-sample information were resolved by introducing a barcoding electronic capture system. Here, we describe the main challenges with COVID-19 data management and analysis in the laboratory and recommend measures for improvement. FUNDING: The work was supported by the Government of Ghana.


Subject(s)
COVID-19 , COVID-19/epidemiology , Data Management , Disease Outbreaks , Ghana/epidemiology , Humans , Laboratories , Pandemics , SARS-CoV-2
7.
Ghana Med J ; 55(2 Suppl): 48-50, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1502652

ABSTRACT

OBJECTIVES: To determine the prevalence of SARS-CoV-2 detection among international travellers to Ghana during mandatory quarantine. DESIGN: A retrospective cross-sectional study. SETTING: Air travellers to Ghana on 21st and 22nd March 2020. PARTICIPANTS: On 21st and 22nd March 2020, a total of 1,030 returning international travellers were mandatorily quarantined in 15 different hotels in Accra and tested for SARS-CoV-2. All of these persons were included in the study. MAIN OUTCOME MEASURE: Positivity for SARS-CoV-2 by polymerase chain reaction. RESULTS: The initial testing at the beginning of quarantine found 79 (7.7%) individuals to be positive for SARS-CoV-2. In the exit screening after 12 to 13 days of quarantine, it was discovered that 26 of those who tested negative for SARS-CoV-2 in the initial screening subsequently tested positive. CONCLUSIONS: Ghana likely averted an early community spread of COVID-19 through the proactive approach to quarantine international travellers during the early phase of the pandemic. FUNDING: None.


Subject(s)
COVID-19 , Quarantine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Ghana/epidemiology , Humans , Retrospective Studies , SARS-CoV-2
8.
Ghana Med J ; 54(4 Suppl): 77-85, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1436198

ABSTRACT

BACKGROUND: A novel coronavirus, SARS-CoV-2 is currently causing a worldwide pandemic. The first cases of SARS-CoV-2 infection were recorded in Ghana on March 12, 2020. Since then, the country has been combatting countrywide community spread. This report describes how the Virology Department, Noguchi Memorial Institute for Medical Research (NMIMR) is supporting the Ghana Health Service (GHS) to diagnose infections with this virus in Ghana. METHODS: The National Influenza Centre (NIC) in the Virology Department of the NMIMR, adopted real-time Polymerase Chain Reaction (rRT-PCR) assays for the diagnosis of the SARS-CoV-2 in January 2020. Samples from suspected cases and contact tracing across Ghana were received and processed for SARS-CoV-2. Samples were 'pooled' to enable simultaneous batch testing of samples without reduced sensitivity. OUTCOMES: From February 3 to August 21, the NMIMR processed 283 946 (10%) samples. Highest number of cases were reported in June when the GHS embarked on targeted contact tracing which led to an increase in number of samples processed daily, peaking at over 7,000 samples daily. There were several issues to overcome including rapid consumption of reagents and consumables. Testing however continued successfully due to revised procedures, additional equipment and improved pipeline of laboratory supplies. Test results are now provided within 24 to 48 hours of sample submission enabling more effective response and containment. CONCLUSION: Following the identification of the first cases of SARS-CoV-2infection by the NMIMR, the Institute has trained other centres and supported the ramping up of molecular testing capacity in Ghana. This provides a blueprint to enable Ghana to mitigate further epidemics and pandemics. FUNDING: The laboratory work was supported with materials from the Ghana Health Service Ministry of Health, the US Naval Medical Research Unit #3, the World Health Organization, the Jack Ma Foundation and the University of Ghana Noguchi Memorial Institute for Medical Research. Other research projects hosted by the Noguchi Memorial Institute for Medical Research contributed reagents and laboratory consumables. The funders had no role in the preparation of this manuscript.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Infection Control/methods , Population Surveillance , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , Contact Tracing/methods , Contact Tracing/statistics & numerical data , Ghana/epidemiology , Humans , National Health Programs , SARS-CoV-2/genetics
9.
Exp Biol Med (Maywood) ; 246(8): 960-970, 2021 04.
Article in English | MEDLINE | ID: covidwho-978882

ABSTRACT

The confirmed case fatality rate for the coronavirus disease 2019 (COVID-19) in Ghana has dropped from a peak of 2% in March to be consistently below 1% since May 2020. Globally, case fatality rates have been linked to the strains/clades of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific country. Here we present 46 whole genomes of SARS-CoV-2 circulating in Ghana, from two separate sequencing batches: 15 isolates from the early epidemic (March 12-April 1 2020) and 31 from later time-points ( 25-27 May 2020). Sequencing was carried out on an Illumina MiSeq system following an amplicon-based enrichment for SARS-CoV-2 cDNA. After genome assembly and quality control processes, phylogenetic analysis showed that the first batch of 15 genomes clustered into five clades: 19A, 19B, 20A, 20B, and 20C, whereas the second batch of 31 genomes clustered to only three clades 19B, 20A, and 20B. The imported cases (6/46) mapped to circulating viruses in their countries of origin, namely, India, Hungary, Norway, the United Kingdom, and the United States of America. All genomes mapped to the original Wuhan strain with high similarity (99.5-99.8%). All imported strains mapped to the European superclade A, whereas 5/9 locally infected individuals harbored the B4 clade, from the East Asian superclade B. Ghana appears to have 19B and 20B as the two largest circulating clades based on our sequence analyses. In line with global reports, the D614G linked viruses seem to be predominating. Comparison of Ghanaian SARS-CoV-2 genomes with global genomes indicates that Ghanaian strains have not diverged significantly from circulating strains commonly imported into Africa. The low level of diversity in our genomes may indicate lower levels of transmission, even for D614G viruses, which is consistent with the relatively low levels of infection reported in Ghana.


Subject(s)
Evolution, Molecular , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , COVID-19/epidemiology , Ghana/epidemiology , Humans , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL