Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Clin Chem ; 68(1): 43-51, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1591716

ABSTRACT

BACKGROUND: Starkly highlighted by the current COVID-19 pandemic, infectious diseases continue to have an outsized impact on human health worldwide. Diagnostic testing for infection can be challenging due to resource limitations, time constraints, or shortcomings in the accuracy of existing diagnostics. Rapid, simple diagnostics are highly desirable. There is increasing interest in the development of diagnostics that use exhaled breath analysis as a convenient and safe diagnostic method, as breath sampling is noninvasive, secure, and easy to perform. Volatile organic compounds (VOCs) present in exhaled breath reflect the fingerprint of the underlying metabolic and biophysical processes during disease. CONTENT: In this review, we overview the major biomarkers present in exhaled breath in infectious diseases. We outline the promising recent advances in breath-based diagnosis of respiratory infections, including those caused by influenza virus, SARS-CoV-2, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Aspergillus fumigatus. In addition, we review the current landscape of diagnosis of 2 other globally important infections: Helicobacter pylori gastrointestinal infection and malaria. SUMMARY: Characteristic and reproducible breath VOCs are associated with several infectious diseases, suggesting breath analysis as a promising strategy for diagnostic development. Ongoing challenges include poor standardization of breath collection and analysis and lack of validation studies. Further research is required to expand the applicability of breath analysis to clinical settings.


Subject(s)
Breath Tests , Communicable Diseases/diagnosis , Volatile Organic Compounds , Exhalation , Humans , Volatile Organic Compounds/analysis
2.
Sci Transl Med ; 13(616): eabj1008, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1518118

ABSTRACT

Red blood cells (RBCs) are essential for aerobic respiration through delivery of oxygen to distant tissues. However, RBCs are currently considered immunologically inert, and few, if any, secondary functions of RBCs have been identified. Here, we showed that RBCs serve as critical immune sensors through surface expression of the nucleic acid­sensing Toll-like receptor 9 (TLR9). Mammalian RBCs expressed TLR9 on their surface and bound CpG-containing DNA derived from bacteria, plasmodia, and mitochondria. RBC-bound mitochondrial DNA was increased during human and murine sepsis and pneumonia. In vivo, CpG-carrying RBCs drove accelerated erythrophagocytosis and innate immune activation characterized by increased interferon signaling. Erythroid-specific deletion of TLR9 abrogated erythrophagocytosis and decreased local and systemic cytokine production during CpG-induced inflammation and polymicrobial sepsis. Thus, detection and capture of nucleic acid by TLR9-expressing RBCs regulated red cell clearance and inflammatory cytokine production, demonstrating that RBCs function as immune sentinels during pathologic states. Consistent with these findings, RBC-bound mitochondrial DNA was elevated in individuals with viral pneumonia and sepsis secondary to coronavirus disease 2019 (COVID-19) and associated with anemia and severity of disease. These findings uncover a previously unappreciated role of RBCs as critical players in inflammation distinct from their function in gas transport.


Subject(s)
Anemia , Immunity, Innate , Toll-Like Receptor 9 , Animals , DNA , Erythrocytes , Humans , Mice
3.
Blood ; 136(Supplement 1):28-29, 2020.
Article in English | PMC | ID: covidwho-1338970

ABSTRACT

Introduction: During the Coronavirus Disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), 3 distinct phenotypes have emerged in children. The majority of children have mild or no symptoms. Similar to adults, a minority of children can be severely affected with respiratory distress requiring intensive care. Finally, they may develop a phenomenon presumed unique to children termed Multisystem Inflammatory Syndrome in Children (MIS-C). MIS-C is a hyperinflammatory syndrome characterized by fever and organ dysfunction (particularly cardiac) in the setting of recent COVID-19 infection. Reports from the adult literature have invoked thrombotic microangiopathy (TMA) and complement activation as a potential cause for severe manifestations of COVID-19 (Zhang et al. NEJM. 2020;Campbell et al. Circulation 2020). Soluble C5b9 (sC5b-9), the terminal complement complex, has been implicated as a marker of hematopoietic stem cell transplant associated TMA (HSCT-TMA;Jodele et al. Blood 2014). We sought to elucidate the role of terminal complement activation and TMA in the different pediatric disease phenotypes.Methods: We enrolled children admitted to the Children's Hospital of Philadelphia during the COVID-19 pandemic who had evidence of SARS-CoV-2 infection on reverse transcriptase polymerase chain reaction (RT-PCR) from mucosa, or met clinical criteria for MIS-C. Patients (pts) were classified in to 3 categories: minimal COVID-19 symptoms or incidental finding of SARS-CoV-2 infection, severe COVID-19 requiring ventilatory support, or MIS-C. To investigate the role of TMA in children with COVID-19 we measured sC5b-9 in plasma of pts with the 3 manifestations of SARS-CoV-2, and in healthy controls. sC5b9 was measured in triplicate at two dilutions by ELISA. Proinflammatory cytokines were measured using V-Plex Pro-inflammatory Panel 1 Human Kits and analyzed on a QuickPlex SQ120. P-values were computed using Dunn's multiple comparisons test after Kruskal-Wallis testing. Blood smears were examined by a hematologist and hematopathologist for schistocytes.Results: 50 pts were enrolled on whom complete sC5b9 data were available: minimal COVID-19 (N=18), severe COVID-19 (N=11), and MIS-C (N=21). Plasma was obtained on healthy controls (N=26). The median sC5b9 level in healthy controls (57 ng/mL) differed significantly (p<0.001 in each case;Figure 1A) from that in pts with minimal disease (392 ng/mL), severe disease (646 ng/mL), and MIS-C (630 ng/mL);differences between MIS-C, minimal, and severe were not statistically significant. Elevations in sC5b9 correlated in a statistically significant manner with the maximum creatinine and blood urea nitrogen (BUN) measured during hospitalization (Figure 1B&C), but not age (p=0.512). sC5b9 did not correlate with lactate dehydrogenase (LDH), nor with the lowest levels of fibrinogen, hemoglobin or platelet counts. Of pts with available data, 19/26 (73.1%) had elevated LDH, 2/31 (6.4%) had hypofibrinogenemia, 35/47 (74.5%) were anemic, and 28/47 (59.6%) were thrombocytopenic.Pro-inflammatory cytokines were measured. Of particular interest to TMA is the neutrophil chemotactic factor IL-8, because of its role as a marker of endothelial damage (Dvorak et al. Front Pediatr 2019). Levels of IL-8 differed significantly between pts with MIS-C (p=0.0166) or pts with severe COVID-19 (p=0.0079), when compared to minimal COVID-19 pts;but not between pts with MIS-C and severe disease (p = 0.99).Blood smears were available on 34 patients. Schistocytes were present in 13/15 (87%) patients with MIS-C, 7/8 (87%) patients with severe COVID-19 and 5/11 (45%) patients with minimal COVID-19 (χ2=6.59, p=0.037).Conclusions: We demonstrate derangements of the final common pathway of complement activation in children with the 3 presentations of SARS-CoV-2. Strikingly, sC5b9s were abnormal even in children with minimal disease or incidental infection. Renal dysfunction correlated with elevations in sC5b9, strengthening the evidence that TMA plays a role in the pa hophysiology of SARS-CoV-2 infection. Future work is aimed at further characterizing the role of the complement cascade in the pathogenesis of MIS-C and COVID-19 in children. The long-term complications of endothelial damage and complement activation are unknown and extended follow-up is warranted.Figure 1

4.
ACS Infect Dis ; 7(9): 2596-2603, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1328835

ABSTRACT

SARS-CoV-2 infection is diagnosed through detection of specific viral nucleic acid or antigens from respiratory samples. These techniques are relatively expensive, slow, and susceptible to false-negative results. A rapid noninvasive method to detect infection would be highly advantageous. Compelling evidence from canine biosensors and studies of adults with COVID-19 suggests that infection reproducibly alters human volatile organic compound (VOC) profiles. To determine whether pediatric infection is associated with VOC changes, we enrolled SARS-CoV-2 infected and uninfected children admitted to a major pediatric academic medical center. Breath samples were collected from children and analyzed through state-of-the-art GCxGC-ToFMS. Isolated features included 84 targeted VOCs. Candidate biomarkers that were correlated with infection status were subsequently validated in a second, independent cohort of children. We thus find that six volatile organic compounds are significantly and reproducibly increased in the breath of SARS-CoV-2 infected children. Three aldehydes (octanal, nonanal, and heptanal) drew special attention, as aldehydes are also elevated in the breath of adults with COVID-19. Together, these biomarkers demonstrate high accuracy for distinguishing pediatric SARS-CoV-2 infection and support the ongoing development of novel breath-based diagnostics.

5.
PLoS One ; 16(4): e0250158, 2021.
Article in English | MEDLINE | ID: covidwho-1183679

ABSTRACT

While the world awaits a widely available COVID-19 vaccine, availability of testing is limited in many regions and can be further compounded by shortages of reagents, prolonged processing time and delayed results. One approach to rapid testing is to leverage the volatile organic compound (VOC) signature of SARS-CoV-2 infection. Detection dogs, a biological sensor of VOCs, were utilized to investigate whether SARS-CoV-2 positive urine and saliva patient samples had a unique odor signature. The virus was inactivated in all training samples with either detergent or heat treatment. Using detergent-inactivated urine samples, dogs were initially trained to find samples collected from hospitalized patients confirmed with SARS-CoV-2 infection, while ignoring samples collected from controls. Dogs were then tested on their ability to spontaneously recognize heat-treated urine samples as well as heat-treated saliva from hospitalized SARS-CoV-2 positive patients. Dogs successfully discriminated between infected and uninfected urine samples, regardless of the inactivation protocol, as well as heat-treated saliva samples. Generalization to novel samples was limited, particularly after intensive training with a restricted sample set. A unique odor associated with SARS-CoV-2 infection present in human urine as well as saliva, provides impetus for the development of odor-based screening, either by electronic, chemical, or biological sensing methods. The use of dogs for screening in an operational setting will require training with a large number of novel SARS-CoV-2 positive and confirmed negative samples.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Working Dogs/psychology , Animals , COVID-19/urine , Dogs , Female , Humans , Male , Mass Screening , Proof of Concept Study , SARS-CoV-2/isolation & purification , Saliva/chemistry , Specimen Handling/methods , Volatile Organic Compounds/chemistry
7.
Open Forum Infect Dis ; 8(3): ofab074, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1155801

ABSTRACT

Rash is a common feature of multisystem inflammatory syndrome in children (MIS-C), a postinfectious hyperinflammatory disease associated with prior severe acute respiratory syndrome coronavirus 2 infection. Because the differential diagnosis of fever and rash in children is broad, understanding clinical characteristics of MIS-C may assist with diagnosis. Here we describe the cutaneous findings observed in a series of children with MIS-C-associated rash.

9.
Pediatr Emerg Care ; 36(11): 554-558, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-990957

ABSTRACT

OBJECTIVE: The aim of the study was to compare presenting clinical and laboratory features among children meeting the surveillance definition for multisystem inflammatory syndrome in children (MIS-C) across a range of illness severities. METHODS: This is a retrospective single-center study of patients younger than 21 years presenting between March 1 and May 15, 2020. Included patients met the Centers for Disease Control and Prevention criteria for MIS-C (inflammation, fever, involvement of 2 organ systems, lack of alternative diagnoses). We defined 3 subgroups by clinical outcomes: (1) critical illness requiring intensive care interventions; (2) patients meeting Kawasaki disease (KD) criteria but not requiring critical care; and (3) mild illness not meeting either criteria. A comparator cohort included patients with KD at our institution during the same time frame in 2019. RESULTS: Thirty-three patients were included (5, critical; 8, 2020 KD; 20, mild). The median age for the critical group was 10.9 years (2.7 for 2020 KD; 6.0 for mild, P = 0.033). The critical group had lower median absolute lymphocyte count (850 vs 3005 vs 2940/uL, P = 0.005), platelets (150 vs 361 vs 252 k/uL, P = 0.005), and sodium (129 vs 136 vs 136 mmol/L, P = 0.002), and higher creatinine (0.7 vs 0.2 vs 0.3 mg/dL, P = 0.002). In the critical group, 60% required vasoactive medications, and 40% required mechanical ventilation. Clinical and laboratories features were similar between the 2020 and 2019 KD groups. CONCLUSIONS: We describe 3 groups with inflammatory syndromes during the SARS-CoV-2 pandemic. The initial profile of lymphopenia, thrombocytopenia, hyponatremia, and abnormal creatinine may help distinguish critically ill MIS-C patients from classic/atypical KD or more benign acute inflammation.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Critical Care/methods , Disease Management , Mucocutaneous Lymph Node Syndrome/diagnosis , Pandemics , Pneumonia, Viral/diagnosis , Adolescent , COVID-19 , Child , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Diagnosis, Differential , Female , Humans , Male , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Retrospective Studies , SARS-CoV-2
10.
Blood Adv ; 4(23): 6051-6063, 2020 12 08.
Article in English | MEDLINE | ID: covidwho-962802

ABSTRACT

Most children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have mild or minimal disease, with a small proportion developing severe disease or multisystem inflammatory syndrome in children (MIS-C). Complement-mediated thrombotic microangiopathy (TMA) has been associated with SARS-CoV-2 infection in adults but has not been studied in the pediatric population. We hypothesized that complement activation plays an important role in SARS-CoV-2 infection in children and sought to understand if TMA was present in these patients. We enrolled 50 hospitalized pediatric patients with acute SARS-CoV-2 infection (n = 21, minimal coronavirus disease 2019 [COVID-19]; n = 11, severe COVID-19) or MIS-C (n = 18). As a biomarker of complement activation and TMA, soluble C5b9 (sC5b9, normal 247 ng/mL) was measured in plasma, and elevations were found in patients with minimal disease (median, 392 ng/mL; interquartile range [IQR], 244-622 ng/mL), severe disease (median, 646 ng/mL; IQR, 203-728 ng/mL), and MIS-C (median, 630 ng/mL; IQR, 359-932 ng/mL) compared with 26 healthy control subjects (median, 57 ng/mL; IQR, 9-163 ng/mL; P < .001). Higher sC5b9 levels were associated with higher serum creatinine (P = .01) but not age. Of the 19 patients for whom complete clinical criteria were available, 17 (89%) met criteria for TMA. A high proportion of tested children with SARS-CoV-2 infection had evidence of complement activation and met clinical and diagnostic criteria for TMA. Future studies are needed to determine if hospitalized children with SARS-CoV-2 should be screened for TMA, if TMA-directed management is helpful, and if there are any short- or long-term clinical consequences of complement activation and endothelial damage in children with COVID-19 or MIS-C.


Subject(s)
COVID-19/diagnosis , Thrombotic Microangiopathies/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Adolescent , Antibodies, Viral/blood , Biomarkers/metabolism , COVID-19/pathology , COVID-19/virology , Child , Child, Preschool , Cluster Analysis , Complement Membrane Attack Complex/metabolism , Creatinine/blood , Female , Humans , Male , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thrombotic Microangiopathies/complications
11.
J Pediatric Infect Dis Soc ; 9(5): 523-529, 2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-919289

ABSTRACT

BACKGROUND: Understanding the prevalence and clinical presentation of coronavirus disease 2019 in pediatric patients can help healthcare providers and systems prepare and respond to this emerging pandemic. METHODS: This was a retrospective case series of patients tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across a pediatric healthcare network, including clinical features and outcomes of those with positive test results. RESULTS: Of 7256 unique children tested for SARS-CoV-2, 424 (5.8%) tested positive. Patients aged 18-21 years had the highest test positive rate (11.2%), while those aged 1-5 years had the lowest (3.9%). By race, 10.6% (226/2132) of black children tested positive vs 3.3% (117/3592) of white children. By indication for testing, 21.1% (371/1756) of patients with reported exposures or clinical symptoms tested positive vs 3.8% (53/1410) of those undergoing preprocedural or preadmission testing. Of 424 patients who tested positive for SARS-CoV-2, 182 (42.9%) had no comorbidities, 87 (20.5%) had asthma, and 55 (13.0%) were obese. Overall, 52.1% had cough, 51.2% fever, and 14.6% shortness of breath. Seventy-seven (18.2%) SARS-CoV-2-positive patients were hospitalized, of whom 24 (31.2%) required respiratory support. SARS-CoV-2-targeted antiviral therapy was given to 9 patients, and immunomodulatory therapy to 18 patients. Twelve (2.8%) SARS-CoV-2-positive patients required mechanical ventilation, and 2 patients required extracorporeal membrane oxygenation. Two patients died. CONCLUSIONS: In this large cohort of pediatric patients tested for SARS-CoV-2, the rate of infection was low but varied by testing indication. The majority of cases were mild and few children had critical illness.


Subject(s)
Clinical Laboratory Techniques , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adolescent , Asymptomatic Diseases , Betacoronavirus , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Female , Hospitalization , Humans , Infant , Male , New Jersey/epidemiology , Pandemics , Pennsylvania/epidemiology , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Polymerase Chain Reaction , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL