Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
JMIR Public Health Surveill ; 8(2): e28737, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-2197918


BACKGROUND: Despite the availability of vaccines, the US incidence of new COVID-19 cases per day nearly doubled from the beginning of July to the end of August 2021, fueled largely by the rapid spread of the Delta variant. While the "Delta wave" appears to have peaked nationally, some states and municipalities continue to see elevated numbers of new cases. Vigilant surveillance including at a metropolitan level can help identify any reignition and validate continued and strong public health policy responses in problem localities. OBJECTIVE: This surveillance report aimed to provide up-to-date information for the 25 largest US metropolitan areas about the rapidity of descent in the number of new cases following the Delta wave peak, as well as any potential reignition of the pandemic associated with declining vaccine effectiveness over time, new variants, or other factors. METHODS: COVID-19 pandemic dynamics for the 25 largest US metropolitan areas were analyzed through September 19, 2021, using novel metrics of speed, acceleration, jerk, and 7-day persistence, calculated from the observed data on the cumulative number of cases as reported by USAFacts. Statistical analysis was conducted using dynamic panel data models estimated with the Arellano-Bond regression techniques. The results are presented in tabular and graphic forms for visual interpretation. RESULTS: On average, speed in the 25 largest US metropolitan areas declined from 34 new cases per day per 100,000 population, during the week ending August 15, 2021, to 29 new cases per day per 100,000 population, during the week ending September 19, 2021. This average masks important differences across metropolitan areas. For example, Miami's speed decreased from 105 for the week ending August 15, 2021, to 40 for the week ending September 19, 2021. Los Angeles, San Francisco, Riverside, and San Diego had decreasing speed over the sample period and ended with single-digit speeds for the week ending September 19, 2021. However, Boston, Washington DC, Detroit, Minneapolis, Denver, and Charlotte all had their highest speed of the sample during the week ending September 19, 2021. These cities, as well as Houston and Baltimore, had positive acceleration for the week ending September 19, 2021. CONCLUSIONS: There is great variation in epidemiological curves across US metropolitan areas, including increasing numbers of new cases in 8 of the largest 25 metropolitan areas for the week ending September 19, 2021. These trends, including the possibility of waning vaccine effectiveness and the emergence of resistant variants, strongly indicate the need for continued surveillance and perhaps a return to more restrictive public health guidelines for some areas.

COVID-19 , Pandemics , COVID-19/epidemiology , Humans , Longitudinal Studies , Pandemics/prevention & control , Public Health Surveillance/methods , SARS-CoV-2
J Med Internet Res ; 23(2): e26081, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1575190


BACKGROUND: The COVID-19 pandemic has had profound and differential impacts on metropolitan areas across the United States and around the world. Within the United States, metropolitan areas that were hit earliest with the pandemic and reacted with scientifically based health policy were able to contain the virus by late spring. For other areas that kept businesses open, the first wave in the United States hit in mid-summer. As the weather turns colder, universities resume classes, and people tire of lockdowns, a second wave is ascending in both metropolitan and rural areas. It becomes more obvious that additional SARS-CoV-2 surveillance is needed at the local level to track recent shifts in the pandemic, rates of increase, and persistence. OBJECTIVE: The goal of this study is to provide advanced surveillance metrics for COVID-19 transmission that account for speed, acceleration, jerk and persistence, and weekly shifts, to better understand and manage risk in metropolitan areas. Existing surveillance measures coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until, and after, an effective vaccine is developed. Here, we provide values for novel indicators to measure COVID-19 transmission at the metropolitan area level. METHODS: Using a longitudinal trend analysis study design, we extracted 260 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in the 25 largest US metropolitan areas as a function of the prior number of cases and weekly shift variables based on a dynamic panel data model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Minneapolis and Chicago have the greatest average number of daily new positive results per standardized 100,000 population (which we refer to as speed). Extreme behavior in Minneapolis showed an increase in speed from 17 to 30 (67%) in 1 week. The jerk and acceleration calculated for these areas also showed extreme behavior. The dynamic panel data model shows that Minneapolis, Chicago, and Detroit have the largest persistence effects, meaning that new cases pertaining to a specific week are statistically attributable to new cases from the prior week. CONCLUSIONS: Three of the metropolitan areas with historically early and harsh winters have the highest persistence effects out of the top 25 most populous metropolitan areas in the United States at the beginning of their cold weather season. With these persistence effects, and with indoor activities becoming more popular as the weather gets colder, stringent COVID-19 regulations will be more important than ever to flatten the second wave of the pandemic. As colder weather grips more of the nation, southern metropolitan areas may also see large spikes in the number of cases.

COVID-19/epidemiology , Communicable Disease Control , COVID-19/prevention & control , COVID-19/transmission , Health Policy , Humans , Longitudinal Studies , Models, Statistical , Pandemics , Public Health , Public Health Surveillance , Registries , SARS-CoV-2 , United States/epidemiology
J Med Internet Res ; 22(9): e20924, 2020 09 22.
Article in English | MEDLINE | ID: covidwho-789082


BACKGROUND: SARS-CoV-2, the novel coronavirus that causes COVID-19, is a global pandemic with higher mortality and morbidity than any other virus in the last 100 years. Without public health surveillance, policy makers cannot know where and how the disease is accelerating, decelerating, and shifting. Unfortunately, existing models of COVID-19 contagion rely on parameters such as the basic reproduction number and use static statistical methods that do not capture all the relevant dynamics needed for surveillance. Existing surveillance methods use data that are subject to significant measurement error and other contaminants. OBJECTIVE: The aim of this study is to provide a proof of concept of the creation of surveillance metrics that correct for measurement error and data contamination to determine when it is safe to ease pandemic restrictions. We applied state-of-the-art statistical modeling to existing internet data to derive the best available estimates of the state-level dynamics of COVID-19 infection in the United States. METHODS: Dynamic panel data (DPD) models were estimated with the Arellano-Bond estimator using the generalized method of moments. This statistical technique enables control of various deficiencies in a data set. The validity of the model and statistical technique was tested. RESULTS: A Wald chi-square test of the explanatory power of the statistical approach indicated that it is valid (χ210=1489.84, P<.001), and a Sargan chi-square test indicated that the model identification is valid (χ2946=935.52, P=.59). The 7-day persistence rate for the week of June 27 to July 3 was 0.5188 (P<.001), meaning that every 10,000 new cases in the prior week were associated with 5188 cases 7 days later. For the week of July 4 to 10, the 7-day persistence rate increased by 0.2691 (P=.003), indicating that every 10,000 new cases in the prior week were associated with 7879 new cases 7 days later. Applied to the reported number of cases, these results indicate an increase of almost 100 additional new cases per day per state for the week of July 4-10. This signifies an increase in the reproduction parameter in the contagion models and corroborates the hypothesis that economic reopening without applying best public health practices is associated with a resurgence of the pandemic. CONCLUSIONS: DPD models successfully correct for measurement error and data contamination and are useful to derive surveillance metrics. The opening of America involves two certainties: the country will be COVID-19-free only when there is an effective vaccine, and the "social" end of the pandemic will occur before the "medical" end. Therefore, improved surveillance metrics are needed to inform leaders of how to open sections of the United States more safely. DPD models can inform this reopening in combination with the extraction of COVID-19 data from existing websites.

Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Health Policy , Models, Biological , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Public Health Surveillance/methods , Betacoronavirus , COVID-19 , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Pandemics/statistics & numerical data , Pneumonia, Viral/prevention & control , Reproducibility of Results , SARS-CoV-2 , United States/epidemiology