Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Transpl Int ; 35: 10369, 2022.
Article in English | MEDLINE | ID: covidwho-1933952

ABSTRACT

Kidney transplant recipients (KTRs) are at increased risk for a more severe course of COVID-19, due to their pre-existing comorbidity and immunosuppression. Consensus protocols recommend lowering immunosuppression in KTRs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the optimal combination remains unclear. Calcineurin inhibitors (CNIs) are cornerstone immunosuppressants used in KTRs and some have been reported to possess antiviral activity against RNA viruses, including coronaviruses. Here, we evaluated the effect of the CNIs tacrolimus, cyclosporin A, and voclosporin (VCS), as well as other immunosuppressants, on SARS-CoV-2 replication in cell-based assays. Unexpected, loss of compound due to plastic binding and interference of excipients in pharmaceutical formulations (false-positive results) complicated the determination of EC50 values of cyclophilin-dependent CNI's in our antiviral assays. Some issues could be circumvented by using exclusively glass lab ware with pure compounds. In these experiments, VCS reduced viral progeny yields in human Calu-3 cells at low micromolar concentrations and did so more effectively than cyclosporin A, tacrolimus or other immunosuppressants. Although, we cannot recommend a particular immunosuppressive regimen in KTRs with COVID-19, our data suggest a potential benefit of cyclophilin-dependent CNIs, in particular VCS in reducing viral progeny, which warrants further clinical evaluation in SARS-CoV-2-infected KTRs.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/therapeutic use , Cell Culture Techniques , Cyclophilins , Cyclosporine/pharmacology , Humans , Immunosuppressive Agents/adverse effects , Tacrolimus/pharmacology
2.
J Med Chem ; 65(8): 6231-6249, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1867997

ABSTRACT

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/drug therapy , COVID-19/virology , Exoribonucleases/antagonists & inhibitors , Exoribonucleases/chemistry , Humans , Methyltransferases , Molecular Docking Simulation , RNA, Viral/genetics , S-Adenosylmethionine , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: covidwho-1541316

ABSTRACT

As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their messenger RNAs (mRNAs), protect them from degradation by cellular 5' exoribonucleases (ExoNs), and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bifunctional replicase subunit harboring an N-terminal 3'-to-5' ExoN domain and a C-terminal (N7-guanine)-methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14's enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)-CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum.


Subject(s)
Exoribonucleases/chemistry , Models, Molecular , Protein Conformation , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Base Sequence , Binding Sites , Catalytic Domain , Conserved Sequence , Exoribonucleases/genetics , Exoribonucleases/metabolism , Microbial Viability , Nucleotide Motifs , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Binding Proteins , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
4.
Cell Host Microbe ; 29(3): 489-502.e8, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1064930

ABSTRACT

The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (Δ500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-ß levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-ß responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.


Subject(s)
COVID-19/immunology , COVID-19/virology , Interferon Type I/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Nonstructural Proteins/genetics , A549 Cells , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Base Sequence , COVID-19/blood , Cell Line , Child , Child, Preschool , Chlorocebus aethiops , Female , Gene Deletion , Genomics , HEK293 Cells , Humans , Infant , Interferon Type I/blood , Interferon-beta/blood , Interferon-beta/metabolism , Male , Middle Aged , Molecular Epidemiology , Reverse Genetics , Vero Cells , Viral Nonstructural Proteins/immunology , Young Adult
5.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: covidwho-975641

ABSTRACT

Coronaviruses (CoVs) stand out for their large RNA genome and complex RNA-synthesizing machinery comprising 16 nonstructural proteins (nsps). The bifunctional nsp14 contains 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase (N7-MTase) domains. While the latter presumably supports mRNA capping, ExoN is thought to mediate proofreading during genome replication. In line with such a role, ExoN knockout mutants of mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) were previously reported to have crippled but viable hypermutation phenotypes. Remarkably, using reverse genetics, a large set of corresponding ExoN knockout mutations has now been found to be lethal for another betacoronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). For 13 mutants, viral progeny could not be recovered, unless-as happened occasionally-reversion had first occurred. Only a single mutant was viable, likely because its E191D substitution is highly conservative. Remarkably, a SARS-CoV-2 ExoN knockout mutant was found to be unable to replicate, resembling observations previously made for alpha- and gammacoronaviruses, but starkly contrasting with the documented phenotype of ExoN knockout mutants of the closely related SARS-CoV. Subsequently, we established in vitro assays with purified recombinant MERS-CoV nsp14 to monitor its ExoN and N7-MTase activities. All ExoN knockout mutations that proved lethal in reverse genetics were found to severely decrease ExoN activity while not affecting N7-MTase activity. Our study strongly suggests that CoV nsp14 ExoN has an additional function, which apparently is critical for primary viral RNA synthesis and thus differs from the proofreading function that, based on previous MHV and SARS-CoV studies, was proposed to boost longer-term replication fidelity.IMPORTANCE The bifunctional nsp14 subunit of the coronavirus replicase contains 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase domains. For the betacoronaviruses MHV and SARS-CoV, ExoN was reported to promote the fidelity of genome replication, presumably by mediating a form of proofreading. For these viruses, ExoN knockout mutants are viable while displaying an increased mutation frequency. Strikingly, we have now established that the equivalent ExoN knockout mutants of two other betacoronaviruses, MERS-CoV and SARS-CoV-2, are nonviable, suggesting an additional and critical ExoN function in their replication. This is remarkable in light of the very limited genetic distance between SARS-CoV and SARS-CoV-2, which is highlighted, for example, by 95% amino acid sequence identity in their nsp14 sequences. For (recombinant) MERS-CoV nsp14, both its enzymatic activities were evaluated using newly developed in vitro assays that can be used to characterize these key replicative enzymes in more detail and explore their potential as target for antiviral drug development.


Subject(s)
Betacoronavirus/physiology , Exoribonucleases/metabolism , Middle East Respiratory Syndrome Coronavirus/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Animals , Betacoronavirus/enzymology , Betacoronavirus/genetics , Catalytic Domain , Cell Line , Exoribonucleases/chemistry , Exoribonucleases/genetics , Fluorouracil/pharmacology , Gene Knockout Techniques , Genome, Viral , Humans , Methylation , Middle East Respiratory Syndrome Coronavirus/enzymology , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , RNA, Viral/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Plaque Assay , Zinc Fingers
6.
Nucleic Acids Res ; 48(22): 12436-12452, 2020 12 16.
Article in English | MEDLINE | ID: covidwho-917707

ABSTRACT

SARS-CoV-2 is a betacoronavirus with a linear single-stranded, positive-sense RNA genome, whose outbreak caused the ongoing COVID-19 pandemic. The ability of coronaviruses to rapidly evolve, adapt, and cross species barriers makes the development of effective and durable therapeutic strategies a challenging and urgent need. As for other RNA viruses, genomic RNA structures are expected to play crucial roles in several steps of the coronavirus replication cycle. Despite this, only a handful of functionally-conserved coronavirus structural RNA elements have been identified to date. Here, we performed RNA structure probing to obtain single-base resolution secondary structure maps of the full SARS-CoV-2 coronavirus genome both in vitro and in living infected cells. Probing data recapitulate the previously described coronavirus RNA elements (5' UTR and s2m), and reveal new structures. Of these, ∼10.2% show significant covariation among SARS-CoV-2 and other coronaviruses, hinting at their functionally-conserved role. Secondary structure-restrained 3D modeling of these segments further allowed for the identification of putative druggable pockets. In addition, we identify a set of single-stranded segments in vivo, showing high sequence conservation, suitable for the development of antisense oligonucleotide therapeutics. Collectively, our work lays the foundation for the development of innovative RNA-targeted therapeutic strategies to fight SARS-related infections.


Subject(s)
COVID-19/prevention & control , Genome, Viral/genetics , Nucleic Acid Conformation , RNA, Viral/chemistry , SARS-CoV-2/genetics , 5' Untranslated Regions/genetics , Algorithms , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Base Sequence , Binding Sites/genetics , COVID-19/epidemiology , COVID-19/virology , Conserved Sequence/genetics , Humans , Models, Molecular , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
7.
J Gen Virol ; 101(9): 925-940, 2020 09.
Article in English | MEDLINE | ID: covidwho-610420

ABSTRACT

The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 from the Chinese province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details of coronavirus infection and pathogenesis. Here, we compared a variety of replication features of SARS-CoV-2 and SARS-CoV and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line. Compared to SARS-CoV, SARS-CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50-fold less infectious viral progeny was recovered from the culture medium. Immunofluorescence microscopy of SARS-CoV-2-infected cells established extensive cross-reactivity of antisera previously raised against a variety of non-structural proteins, membrane and nucleocapsid protein of SARS-CoV. Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are very similar and occur within comparable time frames after infection. Furthermore, we determined that the sensitivity of the two viruses to three established inhibitors of coronavirus replication (remdesivir, alisporivir and chloroquine) is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha. An important difference between the two viruses is the fact that - upon passaging in Vero E6 cells - SARS-CoV-2 apparently is under strong selection pressure to acquire adaptive mutations in its spike protein gene. These mutations change or delete a putative furin-like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic change in plaque assays.


Subject(s)
Betacoronavirus/physiology , SARS Virus/physiology , Virus Replication/physiology , Adaptation, Biological , Animals , Antibodies, Viral/immunology , Betacoronavirus/genetics , Cell Line/ultrastructure , Cell Line/virology , Chlorocebus aethiops , Computational Biology , Conserved Sequence , Cross Reactions , Cytopathogenic Effect, Viral , High-Throughput Nucleotide Sequencing , Humans , Immune Sera/immunology , Kinetics , Mice , Microscopy, Electron , Microscopy, Fluorescence , RNA, Viral/isolation & purification , Rabbits , SARS-CoV-2 , Vero Cells/ultrastructure , Vero Cells/virology
8.
Antimicrob Agents Chemother ; 64(8)2020 07 22.
Article in English | MEDLINE | ID: covidwho-574704

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic that originated in Wuhan, China, in December 2019 has impacted public health, society, the global economy, and the daily lives of billions of people in an unprecedented manner. There are currently no specific registered antiviral drugs to treat or prevent SARS-CoV-2 infections. Therefore, drug repurposing would be the fastest route to provide at least a temporary solution while better, more specific drugs are being developed. Here, we demonstrate that the antiparasitic drug suramin inhibits SARS-CoV-2 replication, protecting Vero E6 cells with a 50% effective concentration (EC50) of ∼20 µM, which is well below the maximum attainable level in human serum. Suramin also decreased the viral load by 2 to 3 logs when Vero E6 cells or cells of a human lung epithelial cell line (Calu-3 2B4 [referred to here as "Calu-3"]) were treated. Time-of-addition and plaque reduction assays performed on Vero E6 cells showed that suramin acts on early steps of the replication cycle, possibly preventing binding or entry of the virus. In a primary human airway epithelial cell culture model, suramin also inhibited the progression of infection. The results of our preclinical study warrant further investigation and suggest that it is worth evaluating whether suramin provides any benefit for COVID-19 patients, which obviously requires safety studies and well-designed, properly controlled randomized clinical trials.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Suramin/pharmacology , Virus Replication/drug effects , Animals , COVID-19 , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drug Repositioning , Humans , Pandemics , SARS-CoV-2 , Vero Cells , Viral Load/drug effects
9.
PLoS Comput Biol ; 16(2): e1007587, 2020 02.
Article in English | MEDLINE | ID: covidwho-7370

ABSTRACT

Genetic perturbation screens using RNA interference (RNAi) have been conducted successfully to identify host factors that are essential for the life cycle of bacteria or viruses. So far, most published studies identified host factors primarily for single pathogens. Furthermore, often only a small subset of genes, e.g., genes encoding kinases, have been targeted. Identification of host factors on a pan-pathogen level, i.e., genes that are crucial for the replication of a diverse group of pathogens has received relatively little attention, despite the fact that such common host factors would be highly relevant, for instance, for devising broad-spectrum anti-pathogenic drugs. Here, we present a novel two-stage procedure for the identification of host factors involved in the replication of different viruses using a combination of random effects models and Markov random walks on a functional interaction network. We first infer candidate genes by jointly analyzing multiple perturbations screens while at the same time adjusting for high variance inherent in these screens. Subsequently the inferred estimates are spread across a network of functional interactions thereby allowing for the analysis of missing genes in the biological studies, smoothing the effect sizes of previously found host factors, and considering a priori pathway information defined over edges of the network. We applied the procedure to RNAi screening data of four different positive-sense single-stranded RNA viruses, Hepatitis C virus, Chikungunya virus, Dengue virus and Severe acute respiratory syndrome coronavirus, and detected novel host factors, including UBC, PLCG1, and DYRK1B, which are predicted to significantly impact the replication cycles of these viruses. We validated the detected host factors experimentally using pharmacological inhibition and an additional siRNA screen and found that some of the predicted host factors indeed influence the replication of these pathogens.


Subject(s)
Gene Regulatory Networks , Host Microbial Interactions/genetics , Models, Biological , Viruses/genetics , Genes, Viral , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL