Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nat Commun ; 13(1): 6309, 2022 Oct 23.
Article in English | MEDLINE | ID: covidwho-2087203

ABSTRACT

Coronavirus vaccines that are highly effective against current and anticipated SARS-CoV-2 variants are needed to control COVID-19. We previously reported a receptor-binding domain (RBD)-sortase A-conjugated ferritin nanoparticle (scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected non-human primates (NHPs) from SARS-CoV-2 WA-1 infection. Here, we find the RBD-scNP induced neutralizing antibodies in NHPs against pseudoviruses of SARS-CoV and SARS-CoV-2 variants including 614G, Beta, Delta, Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5, and a designed variant with escape mutations, PMS20. Adjuvant studies demonstrate variant neutralization titers are highest with 3M-052-aqueous formulation (AF). Immunization twice with RBD-scNPs protect NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protect mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect animals from multiple different SARS-related viruses. Such a vaccine could provide broad immunity to SARS-CoV-2 variants.


Subject(s)
COVID-19 , Nanoparticles , SARS Virus , Viral Vaccines , Mice , Animals , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Mice, Inbred BALB C , COVID-19/prevention & control , Antibodies, Neutralizing/chemistry , Ferritins
2.
Cytometry A ; 101(6): 483-496, 2022 06.
Article in English | MEDLINE | ID: covidwho-1750349

ABSTRACT

Since the beginning of the SARS-CoV-2 pandemic, antibody responses and antibody effector functions targeting SARS-CoV-2-infected cells have been understudied. Consequently, the role of these types of antibodies in SARS-CoV-2 disease (COVID-19) and immunity is still undetermined. To provide tools to study these responses, we used plasma from SARS-CoV-2-infected individuals (n = 50) and SARS-CoV-2 naive healthy controls (n = 20) to develop four specific and reproducible flow cytometry-based assays: (i) two assessing antibody binding to, and antibody-mediated NK cell degranulation against, SARS-CoV-2-infected cells and (ii) two assessing antibody binding to, and antibody-mediated NK cell degranulation against, SARS-CoV-2 Spike-transfected cells. All four assays demonstrated the ability to detect the presence of these functional antibody responses in a specific and reproducible manner. Interestingly, we found weak to moderate correlations between the four assays (Spearman rho ranged from 0.50 to 0.74), suggesting limited overlap in the responses captured by the individual assays. Lastly, while we initially developed each assay with multiple dilutions in an effort to capture the full relationship between antibody titers and assay outcome, we explored the relationship between fewer antibody dilutions and the full dilution series for each assay to reduce assay costs and improve assay efficiency. We found high correlations between the full dilution series and fewer or single dilutions of plasma. Use of single or fewer sample dilutions to accurately determine the response rates and magnitudes of the responses allows for high-throughput use of these assays platforms to facilitate assessment of antibody responses elicited by SARS-CoV-2 infection and vaccination in large clinical studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Cell Degranulation , Flow Cytometry , Humans , Spike Glycoprotein, Coronavirus
3.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327163

ABSTRACT

Coronavirus vaccines that are highly effective against SARS-CoV-2 variants are needed to control the current pandemic. We previously reported a receptor-binding domain (RBD) sortase A-conjugated ferritin nanoparticle (RBD-scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected monkeys from SARS-CoV-2 WA-1 infection. Here, we demonstrate SARS-CoV-2 RBD-scNP immunization induces potent neutralizing antibodies against all eight SARS-CoV-2 variants tested including the Beta, Delta, and Omicron variants in non-human primates (NHPs). The Omicron variant was neutralized by RBD-scNP-induced serum antibodies with a mean of 4.3-fold reduction of ID50 titers compared to SARS-CoV-2 D614G. Immunization with RBD-scNPs protected NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protected mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect NHPs and mice from multiple different SARS-related viruses. Such a vaccine could provide the needed immunity to slow the spread of and reduce disease caused by SARS-CoV-2 variants such as Delta and Omicron.

4.
Sci Adv ; 7(49): eabl7682, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1550871

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are concerning in the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a rapid test, termed CoVariant-SCAN, that detects neutralizing antibodies (nAbs) capable of blocking interactions between the angiotensin-converting enzyme 2 receptor and the spike protein of wild-type (WT) SARS-CoV-2 and three other variants: B.1.1.7, B.1.351, and P.1. Using CoVariant-SCAN, we assessed neutralization/blocking of monoclonal antibodies and plasma from COVID-19­positive and vaccinated individuals. For several monoclonal antibodies and most plasma samples, neutralization against B.1.351 and P.1 variants is diminished relative to WT, while B.1.1.7 is largely cross-neutralized. We also showed that we can rapidly adapt the platform to detect nAbs against an additional variant­B.1.617.2 (Delta)­without reengineering or reoptimizing the assay. Results using CoVariant-SCAN are consistent with live virus neutralization assays and demonstrate that this easy-to-deploy test could be used to rapidly assess nAb response against multiple SARS-CoV-2 variants.

5.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750472

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has escalated into a global crisis. The spike (S) protein that mediates cell entry and membrane fusion is the current focus of vaccine and therapeutic antibody development efforts. The S protein, like many other viral fusion proteins such as HIV-1 envelope (Env) and influenza hemagglutinin, is glycosylated with both complex and high mannose glycans. Here we demonstrate binding to the SARS-CoV-2 S protein by a category of Fab-dimerized glycan-reactive (FDG) HIV-1-induced broadly neutralizing antibodies (bnAbs). A 3.1 A resolution cryo-EM structure of the S protein ectodomain bound to glycan-dependent HIV-1 bnAb 2G12 revealed a quaternary glycan epitope on the spike S2 domain involving multiple protomers. These data reveal a new epitope on the SARS-CoV-2 spike that can be targeted for vaccine design. Highlights: Fab-dimerized, glycan-reactive (FDG) HIV-1 bnAbs cross-react with SARS-CoV-2 spike.3.1 A resolution cryo-EM structure reveals quaternary S2 epitope for HIV-1 bnAb 2G12.2G12 targets glycans, at positions 709, 717 and 801, in the SARS-CoV-2 spike.Our studies suggest a common epitope for FDG antibodies centered around glycan 709.

6.
Sci Adv ; 7(26)2021 06.
Article in English | MEDLINE | ID: covidwho-1282047

ABSTRACT

Highly sensitive, specific, and point-of-care (POC) serological assays are an essential tool to manage coronavirus disease 2019 (COVID-19). Here, we report on a microfluidic POC test that can profile the antibody response against multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens-spike S1 (S1), nucleocapsid (N), and the receptor binding domain (RBD)-simultaneously from 60 µl of blood, plasma, or serum. We assessed the levels of antibodies in plasma samples from 31 individuals (with longitudinal sampling) with severe COVID-19, 41 healthy individuals, and 18 individuals with seasonal coronavirus infections. This POC assay achieved high sensitivity and specificity, tracked seroconversion, and showed good concordance with a live virus microneutralization assay. We can also detect a prognostic biomarker of severity, IP-10 (interferon-γ-induced protein 10), on the same chip. Because our test requires minimal user intervention and is read by a handheld detector, it can be globally deployed to combat COVID-19.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Testing , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , COVID-19 Serological Testing/instrumentation , Humans , Reproducibility of Results , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
7.
Cell ; 184(16): 4203-4219.e32, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1275187

ABSTRACT

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.


Subject(s)
Antibodies, Neutralizing/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/immunology , Bronchoalveolar Lavage Fluid/chemistry , COVID-19/pathology , COVID-19/virology , Cytokines/metabolism , Female , Haplorhini , Humans , Lung/pathology , Lung/virology , Male , Mice , Mice, Inbred BALB C , Protein Domains , RNA, Guide/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Viral Load , Virus Replication
8.
Cell ; 184(11): 2955-2972.e25, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1237636

ABSTRACT

Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.


Subject(s)
Antibodies, Neutralizing/immunology , HIV-1/immunology , Immunoglobulin Fab Fragments/immunology , Polysaccharides/immunology , SARS-CoV-2/immunology , Simian Immunodeficiency Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Dimerization , Epitopes/immunology , Glycosylation , HIV Antibodies/immunology , HIV Infections/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Macaca mulatta , Polysaccharides/chemistry , Receptors, Antigen, B-Cell/chemistry , Simian Immunodeficiency Virus/genetics , Vaccines/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
9.
Nature ; 594(7864): 553-559, 2021 06.
Article in English | MEDLINE | ID: covidwho-1221200

ABSTRACT

Betacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , COVID-19/immunology , COVID-19/prevention & control , Common Cold/prevention & control , Cross Reactions/immunology , Pandemics , Viral Vaccines/immunology , Adjuvants, Immunologic , Administration, Intranasal , Animals , COVID-19/epidemiology , COVID-19 Vaccines/immunology , Common Cold/immunology , Common Cold/virology , Disease Models, Animal , Female , Humans , Macaca/immunology , Male , Models, Molecular , Nanoparticles/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Trachea , Vaccination
10.
Nat Biotechnol ; 39(8): 989-999, 2021 08.
Article in English | MEDLINE | ID: covidwho-1189236

ABSTRACT

Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease.


Subject(s)
B-Lymphocytes/immunology , COVID-19/therapy , Globulins/biosynthesis , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , CHO Cells , Cricetulus , Enzyme-Linked Immunosorbent Assay , Globulins/immunology , Humans , Immunization, Passive , Mice , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Zika Virus/immunology
11.
Nat Struct Mol Biol ; 28(2): 128-131, 2021 02.
Article in English | MEDLINE | ID: covidwho-1010060

ABSTRACT

The SARS-CoV-2 spike (S) protein, a primary target for COVID-19 vaccine development, presents its receptor binding domain in two conformations, the receptor-accessible 'up' or receptor-inaccessible 'down' states. Here we report that the commonly used stabilized S ectodomain construct '2P' is sensitive to cold temperatures, and this cold sensitivity is abrogated in a 'down' state-stabilized ectodomain. Our findings will impact structural, functional and vaccine studies that use the SARS-CoV-2 S ectodomain.


Subject(s)
Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Viral/chemistry , COVID-19 Vaccines/chemistry , Cold Temperature , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Humans , Protein Denaturation , Protein Domains , Protein Stability , Spike Glycoprotein, Coronavirus/ultrastructure , Surface Plasmon Resonance
12.
Immunity ; 53(6): 1281-1295.e5, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-967679

ABSTRACT

The deployment of effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to eradicate the coronavirus disease 2019 (COVID-19) pandemic. Many licensed vaccines confer protection by inducing long-lived plasma cells (LLPCs) and memory B cells (MBCs), cell types canonically generated during germinal center (GC) reactions. Here, we directly compared two vaccine platforms-mRNA vaccines and a recombinant protein formulated with an MF59-like adjuvant-looking for their abilities to quantitatively and qualitatively shape SARS-CoV-2-specific primary GC responses over time. We demonstrated that a single immunization with SARS-CoV-2 mRNA, but not with the recombinant protein vaccine, elicited potent SARS-CoV-2-specific GC B and T follicular helper (Tfh) cell responses as well as LLPCs and MBCs. Importantly, GC responses strongly correlated with neutralizing antibody production. mRNA vaccines more efficiently induced key regulators of the Tfh cell program and influenced the functional properties of Tfh cells. Overall, this study identifies SARS-CoV-2 mRNA vaccines as strong candidates for promoting robust GC-derived immune responses.


Subject(s)
Antibodies, Neutralizing/metabolism , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Germinal Center/immunology , SARS-CoV-2/physiology , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, Synthetic/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Cells, Cultured , Epitopes , Humans , Lymphocyte Activation , Polysorbates , RNA, Viral/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Squalene , Vaccination
13.
Immunity ; 53(4): 724-732.e7, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-710374

ABSTRACT

SARS-CoV-2 infection has emerged as a serious global pandemic. Because of the high transmissibility of the virus and the high rate of morbidity and mortality associated with COVID-19, developing effective and safe vaccines is a top research priority. Here, we provide a detailed evaluation of the immunogenicity of lipid nanoparticle-encapsulated, nucleoside-modified mRNA (mRNA-LNP) vaccines encoding the full-length SARS-CoV-2 spike protein or the spike receptor binding domain in mice. We demonstrate that a single dose of these vaccines induces strong type 1 CD4+ and CD8+ T cell responses, as well as long-lived plasma and memory B cell responses. Additionally, we detect robust and sustained neutralizing antibody responses and the antibodies elicited by nucleoside-modified mRNA vaccines do not show antibody-dependent enhancement of infection in vitro. Our findings suggest that the nucleoside-modified mRNA-LNP vaccine platform can induce robust immune responses and is a promising candidate to combat COVID-19.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , RNA, Messenger/immunology , RNA, Viral/immunology , Viral Vaccines/administration & dosage , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Models, Animal , Furin/genetics , Furin/immunology , Humans , Immunity, Humoral/drug effects , Immunization/methods , Immunogenicity, Vaccine , Immunologic Memory/drug effects , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic , Viral Vaccines/biosynthesis , Viral Vaccines/genetics
14.
bioRxiv ; 2020 Jun 30.
Article in English | MEDLINE | ID: covidwho-636939

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has escalated into a global crisis. The spike (S) protein that mediates cell entry and membrane fusion is the current focus of vaccine and therapeutic antibody development efforts. The S protein, like many other viral fusion proteins such as HIV-1 envelope (Env) and influenza hemagglutinin, is glycosylated with both complex and high mannose glycans. Here we demonstrate binding to the SARS-CoV-2 S protein by a category of Fab-dimerized glycan-reactive (FDG) HIV-1-induced broadly neutralizing antibodies (bnAbs). A 3.1 Å resolution cryo-EM structure of the S protein ectodomain bound to glycan-dependent HIV-1 bnAb 2G12 revealed a quaternary glycan epitope on the spike S2 domain involving multiple protomers. These data reveal a new epitope on the SARS-CoV-2 spike that can be targeted for vaccine design. HIGHLIGHTS: Fab-dimerized, glycan-reactive (FDG) HIV-1 bnAbs cross-react with SARS-CoV-2 spike.3.1 Å resolution cryo-EM structure reveals quaternary S2 epitope for HIV-1 bnAb 2G12.2G12 targets glycans, at positions 709, 717 and 801, in the SARS-CoV-2 spike.Our studies suggest a common epitope for FDG antibodies centered around glycan 709.

SELECTION OF CITATIONS
SEARCH DETAIL