Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
Embase;
Preprint in English | EMBASE | ID: ppcovidwho-326852

ABSTRACT

Introduction: Understanding human mixing patterns relevant to infectious diseases spread through close contact is vital for modelling transmission dynamics and optimisation of disease control strategies. Mixing patterns in low-income countries like Malawi are not well understood. Methodology: We conducted a social mixing survey in urban Blantyre, Malawi between April and July 2021 (between the 2nd and 3rd wave of COVID-19 infections). Participants living in densely-populated neighbourhoods were randomly sampled and, if they consented, reported their physical and non-physical contacts within and outside homes lasting at least 5 minutes during the previous day. Age-specific mixing rates were calculated, and a negative binomial mixed effects model was used to estimate determinants of contact behaviour. Results: Of 1,201 individuals enrolled, 702 (58.5%) were female, the median age was 15 years (interquartile range [IQR] 5-32) and 127 (10.6%) were HIV-positive. On average, participants reported 10.3 contacts per day (range: 1-25). Mixing patterns were highly age-assortative, particularly those within the community and with skin-to-skin contact. Adults aged 20-49y reported the most contacts (median:11, IQR: 8-15) of all age groups;38% (95%CI: 16-63) more than infants (median: 8, IQR: 5-10), who had the least contacts. Household contact frequency increased by 3% (95%CI 2-5) per additional household member. Unemployed participants had 15% (95%CI: 9-21) fewer contacts than other adults. Among long range (>30 meters away from home) contacts, secondary school children had the largest median contact distance from home (257m, IQR 78-761). HIV-positive status in adults >18 years-old was not associated with increased contact patterns (1%, 95%CI -9-12). During this period of relatively low COVID-19 incidence in Malawi, 301 (25.1%) individuals stated that they had limited their contact with others due to COVID-19 precautions;however, their reported contacts were not fewer (8%, 95%CI 1-13). Conclusion: In urban Malawi, contact rates, are high and age-assortative, with little behavioural change due to either HIV-status or COVID-19 circulation. This highlights the limits of contact-restriction-based mitigation strategies in such settings and the need for pandemic preparedness to better understand how contact reductions can be enabled and motivated.

2.
BMC Med ; 19(1): 35, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1061076

ABSTRACT

BACKGROUND: The COVID-19 pandemic has disrupted routine measles immunisation and supplementary immunisation activities (SIAs) in most countries including Kenya. We assessed the risk of measles outbreaks during the pandemic in Kenya as a case study for the African Region. METHODS: Combining measles serological data, local contact patterns, and vaccination coverage into a cohort model, we predicted the age-adjusted population immunity in Kenya and estimated the probability of outbreaks when contact-reducing COVID-19 interventions are lifted. We considered various scenarios for reduced measles vaccination coverage from April 2020. RESULTS: In February 2020, when a scheduled SIA was postponed, population immunity was close to the herd immunity threshold and the probability of a large outbreak was 34% (8-54). As the COVID-19 contact restrictions are nearly fully eased, from December 2020, the probability of a large measles outbreak will increase to 38% (19-54), 46% (30-59), and 54% (43-64) assuming a 15%, 50%, and 100% reduction in measles vaccination coverage. By December 2021, this risk increases further to 43% (25-56), 54% (43-63), and 67% (59-72) for the same coverage scenarios respectively. However, the increased risk of a measles outbreak following the lifting of all restrictions can be overcome by conducting a SIA with ≥ 95% coverage in under-fives. CONCLUSION: While contact restrictions sufficient for SAR-CoV-2 control temporarily reduce measles transmissibility and the risk of an outbreak from a measles immunity gap, this risk rises rapidly once these restrictions are lifted. Implementing delayed SIAs will be critical for prevention of measles outbreaks given the roll-back of contact restrictions in Kenya.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks/prevention & control , Measles Vaccine/supply & distribution , Measles/prevention & control , SARS-CoV-2 , Adolescent , COVID-19/complications , Child , Child, Preschool , Female , Humans , Immunization Programs , Infant , Infant, Newborn , Kenya/epidemiology , Male , Measles/blood , Measles/complications , Vaccination Coverage
SELECTION OF CITATIONS
SEARCH DETAIL