Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Commun ; 13(1): 4380, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-1984384

ABSTRACT

Emerging diseases caused by coronaviruses of likely bat origin (e.g., SARS, MERS, SADS, COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this spillover may help target prevention programs. We derive current range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human viral seroprevalence, and antibody duration to estimate that a median of 66,280 people (95% CI: 65,351-67,131) are infected with SARSr-CoVs annually in Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence.


Subject(s)
COVID-19 , Chiroptera , Severe acute respiratory syndrome-related coronavirus , Animals , Asia, Southeastern/epidemiology , Evolution, Molecular , Humans , Phylogeny , Seroepidemiologic Studies
2.
One Health Outlook ; 4(1): 11, 2022 Jun 03.
Article in English | MEDLINE | ID: covidwho-1872079

ABSTRACT

BACKGROUND: Hunters, vendors, and consumers are key actors in the wildlife trade value chain in North Sulawesi, Indonesia, and potentially face an elevated risk of exposure to zoonotic diseases. Understanding the knowledge, attitudes, and practices (KAP) associated with the risk of zoonotic disease transmission in these communities is therefore critical for developing recommendations to prevent or mitigate zoonotic outbreaks in the future. METHODS: Qualitative and quantitative methods were combined to understand KAP associated zoonotic diseases transmission risk in communities involved in the wildlife trade in North Sulawesi. Qualitative data were collected through semi-structured ethnographic interviews and focus group discussions (FGDs) while quantitative data were collected using questionnaires. We conducted 46 ethnographic interviews and 2 FGDs in 2016, and 477 questionnaire administrations in 2017-2018 in communities from five districts in North Sulawesi. We also collected biological specimens, including nasal swab, oropharyngeal swab, and blood, from 254 participants. The study sites were targeted based on known wildlife consumption and trade activities. The participants for qualitative data collection were purposively selected while participants for quantitative data collection were randomly selected. Biological samples were tested for five viral families including Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae and Paramyxoviridae. RESULTS: Knowledge regarding disease transmission from animals to humans was similar across the participants in qualitative focus groups, including knowledge of rabies and bird flu as zoonotic diseases. However, only a small fraction of the participants from the quantitative group (1%) considered that contact with wild animals could cause sickness. Our biological specimen testing identified a single individual (1/254, 0.004%) who was sampled in 2018 with serological evidence of sarbecovirus exposure. Overall, participants were aware of some level of risk in working with open wounds while slaughtering or butchering an animal (71%) but most did not know what the specific risks were. However, significant differences in the attitudes or beliefs around zoonotic disease risk and health seeking behaviors were observed across our study sites in North Sulawesi. CONCLUSIONS: Our study showed variable levels of knowledge, attitudes, and practices associated with the risk of zoonotic disease transmission among study participants. These findings can be used to develop locally responsive recommendations to mitigate zoonotic disease transmission.

3.
BMC Infect Dis ; 22(1): 472, 2022 May 16.
Article in English | MEDLINE | ID: covidwho-1846803

ABSTRACT

BACKGROUND: Interactions between humans and animals are the key elements of zoonotic spillover leading to zoonotic disease emergence. Research to understand the high-risk behaviors associated with disease transmission at the human-animal interface is limited, and few consider regional and local contexts. OBJECTIVE: This study employed an integrated behavioral-biological surveillance approach for the early detection of novel and known zoonotic viruses in potentially high-risk populations, in an effort to identify risk factors for spillover and to determine potential foci for risk-mitigation measures. METHOD: Participants were enrolled at two community-based sites (n = 472) in eastern and western Thailand and two hospital (clinical) sites (n = 206) in northeastern and central Thailand. A behavioral questionnaire was administered to understand participants' demographics, living conditions, health history, and animal-contact behaviors and attitudes. Biological specimens were tested for coronaviruses, filoviruses, flaviviruses, influenza viruses, and paramyxoviruses using pan (consensus) RNA Virus assays. RESULTS: Overall 61/678 (9%) of participants tested positive for the viral families screened which included influenza viruses (75%), paramyxoviruses (15%), human coronaviruses (3%), flaviviruses (3%), and enteroviruses (3%). The most salient predictors of reporting unusual symptoms (i.e., any illness or sickness that is not known or recognized in the community or diagnosed by medical providers) in the past year were having other household members who had unusual symptoms and being scratched or bitten by animals in the same year. Many participants reported raising and handling poultry (10.3% and 24.2%), swine (2%, 14.6%), and cattle (4.9%, 7.8%) and several participants also reported eating raw or undercooked meat of these animals (2.2%, 5.5%, 10.3% respectively). Twenty four participants (3.5%) reported handling bats or having bats in the house roof. Gender, age, and livelihood activities were shown to be significantly associated with participants' interactions with animals. Participants' knowledge of risks influenced their health-seeking behavior. CONCLUSION: The results suggest that there is a high level of interaction between humans, livestock, and wild animals in communities at sites we investigated in Thailand. This study highlights important differences among demographic and occupational risk factors as they relate to animal contact and zoonotic disease risk, which can be used by policymakers and local public health programs to build more effective surveillance strategies and behavior-focused interventions.


Subject(s)
Communicable Diseases, Emerging , Animals , Animals, Wild , Cattle , Communicable Diseases, Emerging/epidemiology , Humans , Poultry , Swine , Thailand/epidemiology , Zoonoses/epidemiology
4.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200358, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1429384

ABSTRACT

In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Subject(s)
Disease Reservoirs/virology , Global Health , Pandemics/prevention & control , Zoonoses/prevention & control , Zoonoses/virology , Animals , Animals, Wild , COVID-19/prevention & control , COVID-19/veterinary , Ecology , Humans , Laboratories , Machine Learning , Risk Factors , SARS-CoV-2 , Viruses , Zoonoses/epidemiology
5.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: covidwho-1171893

ABSTRACT

The death toll and economic loss resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are stark reminders that we are vulnerable to zoonotic viral threats. Strategies are needed to identify and characterize animal viruses that pose the greatest risk of spillover and spread in humans and inform public health interventions. Using expert opinion and scientific evidence, we identified host, viral, and environmental risk factors contributing to zoonotic virus spillover and spread in humans. We then developed a risk ranking framework and interactive web tool, SpillOver, that estimates a risk score for wildlife-origin viruses, creating a comparative risk assessment of viruses with uncharacterized zoonotic spillover potential alongside those already known to be zoonotic. Using data from testing 509,721 samples from 74,635 animals as part of a virus discovery project and public records of virus detections around the world, we ranked the spillover potential of 887 wildlife viruses. Validating the risk assessment, the top 12 were known zoonotic viruses, including SARS-CoV-2. Several newly detected wildlife viruses ranked higher than known zoonotic viruses. Using a scientifically informed process, we capitalized on the recent wealth of virus discovery data to systematically identify and prioritize targets for investigation. The publicly accessible SpillOver platform can be used by policy makers and health scientists to inform research and public health interventions for prevention and rapid control of disease outbreaks. SpillOver is a living, interactive database that can be refined over time to continue to improve the quality and public availability of information on viral threats to human health.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Pandemics , SARS-CoV-2 , Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Humans , Zoonoses/epidemiology , Zoonoses/transmission
6.
PLoS Pathog ; 16(9): e1008758, 2020 09.
Article in English | MEDLINE | ID: covidwho-742547

ABSTRACT

The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (ß-CoVs), free-ranging bats are a key group of concern for spillover from humans back to wildlife. Here, we review the diversity and natural host range of ß-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of ß-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations.


Subject(s)
Animals, Wild/virology , Betacoronavirus/pathogenicity , Coronavirus Infections/virology , Pneumonia, Viral/virology , Animals , COVID-19 , Chiroptera/virology , Genome, Viral/genetics , Host Specificity/physiology , Humans , Pandemics , SARS-CoV-2
7.
Nat Commun ; 11(1): 4235, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-738373

ABSTRACT

Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. Here we use a Bayesian statistical framework and a large sequence data set from bat-CoVs (including 630 novel CoV sequences) in China to study their macroevolution, cross-species transmission and dispersal. We find that host-switching occurs more frequently and across more distantly related host taxa in alpha- than beta-CoVs, and is more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.


Subject(s)
Chiroptera/virology , Coronavirus Infections/veterinary , Coronavirus/genetics , Evolution, Molecular , Zoonoses/transmission , Animals , Bayes Theorem , Betacoronavirus/classification , Betacoronavirus/genetics , Biodiversity , COVID-19 , China , Chiroptera/classification , Coronavirus/classification , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Pandemics , Phylogeny , Phylogeography , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Zoonoses/virology
8.
Biosaf Health ; 2(1): 6-8, 2020 Mar.
Article in English | MEDLINE | ID: covidwho-608222

ABSTRACT

A novel bat-origin coronavirus emerged in Wuhan, China in December 2019 and continues to spread across China and the world. At the time of writing, a massive global response has been implemented to control the disease as it spreads from person to person. Yet the high-risk human-wildlife interactions and interfaces that led to the emergence of SARS-CoV and of 2019-nCoV continue to exist in emerging disease hotspots globally. To prevent the next epidemic and pandemic related to these interfaces, we call for research and investment in three areas: 1) surveillance among wildlife to identify the high-risk pathogens they carry; 2) surveillance among people who have contact with wildlife to identify early spillover events; and 3) improvement of market biosecurity regarding the wildlife trade. As the emergence of a novel virus anywhere can impact the furthest reaches of our connected world, international collaboration among scientists is essential to address these risks and prevent the next pandemic.

9.
Nat Rev Microbiol ; 18(8): 461-471, 2020 08.
Article in English | MEDLINE | ID: covidwho-596755

ABSTRACT

Most viral pathogens in humans have animal origins and arose through cross-species transmission. Over the past 50 years, several viruses, including Ebola virus, Marburg virus, Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory coronavirus (MERS-CoV) and SARS-CoV-2, have been linked back to various bat species. Despite decades of research into bats and the pathogens they carry, the fields of bat virus ecology and molecular biology are still nascent, with many questions largely unexplored, thus hindering our ability to anticipate and prepare for the next viral outbreak. In this Review, we discuss the latest advancements and understanding of bat-borne viruses, reflecting on current knowledge gaps and outlining the potential routes for future research as well as for outbreak response and prevention efforts.


Subject(s)
Biodiversity , Chiroptera/virology , Communicable Diseases, Emerging/virology , Virus Diseases/virology , Virus Physiological Phenomena , Zoonoses/virology , Animals , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/transmission , Disease Outbreaks/prevention & control , Humans , Research/trends , Virus Diseases/prevention & control , Zoonoses/prevention & control , Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL