Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cell Rep ; 37(1): 109771, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1439919

ABSTRACT

Understanding mechanisms of protective antibody recognition can inform vaccine and therapeutic strategies against SARS-CoV-2. We report a monoclonal antibody, 910-30, targeting the SARS-CoV-2 receptor-binding site for ACE2 as a member of a public antibody response encoded by IGHV3-53/IGHV3-66 genes. Sequence and structural analyses of 910-30 and related antibodies explore how class recognition features correlate with SARS-CoV-2 neutralization. Cryo-EM structures of 910-30 bound to the SARS-CoV-2 spike trimer reveal binding interactions and its ability to disassemble spike. Despite heavy-chain sequence similarity, biophysical analyses of IGHV3-53/3-66-encoded antibodies highlight the importance of native heavy:light pairings for ACE2-binding competition and SARS-CoV-2 neutralization. We develop paired heavy:light class sequence signatures and determine antibody precursor prevalence to be ∼1 in 44,000 human B cells, consistent with public antibody identification in several convalescent COVID-19 patients. These class signatures reveal genetic, structural, and functional immune features that are helpful in accelerating antibody-based medical interventions for SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation , B-Lymphocytes/immunology , Binding Sites , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Humans , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/ultrastructure , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/ultrastructure , Male , Protein Binding , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
2.
Cell Rep ; 33(4): 108322, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-888426

ABSTRACT

Biotin-labeled molecular probes, comprising specific regions of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. Here, we design constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions include full-length spike ectodomain as well as various subregions, and we also design mutants that eliminate recognition of the angiotensin-converting enzyme 2 (ACE2) receptor. Yields of biotin-labeled probes from transient transfection range from ∼0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes are characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe is determined by cryoelectron microscopy. We also characterize antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike ectodomain probes.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/immunology , Molecular Probes/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Antibody Specificity/immunology , Binding Sites, Antibody/immunology , Biotinylation , COVID-19 , Cryoelectron Microscopy , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL