Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Influenza Other Respir Viruses ; 2022 Jul 11.
Article in English | MEDLINE | ID: covidwho-1927596

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, self-reported COVID-19 vaccination might facilitate rapid evaluations of vaccine effectiveness (VE) when source documentation (e.g., immunization information systems [IIS]) is not readily available. We evaluated the concordance of COVID-19 vaccination status ascertained by self-report versus source documentation and its impact on VE estimates. METHODS: Hospitalized adults (≥18 years) admitted to 18 U.S. medical centers March-June 2021 were enrolled, including COVID-19 cases and SARS-CoV-2 negative controls. Patients were interviewed about COVID-19 vaccination. Abstractors simultaneously searched IIS, medical records, and other sources for vaccination information. To compare vaccination status by self-report and documentation, we estimated percent agreement and unweighted kappa with 95% confidence intervals (CIs). We then calculated VE in preventing COVID-19 hospitalization of full vaccination (2 doses of mRNA product ≥14 days prior to illness onset) independently using data from self-report or source documentation. RESULTS: Of 2520 patients, 594 (24%) did not have self-reported vaccination information to assign vaccination group; these patients tended to be more severely ill. Among 1924 patients with both self-report and source documentation information, 95.0% (95% CI: 93.9-95.9%) agreement was observed, with a kappa of 0.9127 (95% CI: 0.9109-0.9145). VE was 86% (95% CI: 81-90%) by self-report data only and 85% (95% CI: 81-89%) by source documentation data only. CONCLUSIONS: Approximately one-quarter of hospitalized patients could not provide self-report COVID-19 vaccination status. Among patients with self-report information, there was high concordance with source documented status. Self-report may be a reasonable source of COVID-19 vaccination information for timely VE assessment for public health action.

2.
Clin Infect Dis ; 2022 Jun 19.
Article in English | MEDLINE | ID: covidwho-1901139

ABSTRACT

BACKGROUND: Clinical differences between critical illness from influenza infection versus coronavirus disease 2019 (COVID-19) have not been well characterized in pediatric patients. METHODS: We compared U.S. children (8 months to 17 years) admitted to the intensive care or high acuity unit with influenza (17 hospitals, 12/19/2019-3/9/2020) or COVID-19 (52 hospitals, 3/15/2020-12/31/2020). We compared demographics, underlying conditions, clinical presentation, severity, and outcomes. Using mixed-effects models, we assessed the odds of death or requiring life-support for influenza versus COVID-19 after adjustment for age, sex, race and Hispanic origin, and underlying conditions including obesity. RESULTS: Children with influenza (n = 179) were younger than those with COVID-19 (n = 381; median 5.2 vs. 13.8 years), less likely to be non-Hispanic black (14.5% vs. 27.6%) or Hispanic (24.0% vs. 36.2%), and less likely to have ≥1 underlying condition (66.4% vs. 78.5%) or be obese (21.4% vs. 42.2%). They were similarly likely to require invasive mechanical ventilation (both 30.2%), vasopressor support (19.6% and 19.9%), or extracorporeal membrane oxygenation (2.2% and 2.9%). Four children with influenza (2.2%) and 11 children with COVID-19 (2.9%) died. The odds of death or requiring life-support in children with influenza vs. COVID-19 were similar (adjusted odds ratio, 1.30 [95% CI: 0.78-2.15; P = 0.32]). Median duration of hospital stay was shorter for influenza than COVID-19 (5 versus 7 days). CONCLUSIONS: Despite differences in demographics and clinical characteristics of children with influenza or COVID-19, the frequency of life-threatening complications was similar. Our findings highlight the importance of implementing prevention measures to reduce transmission and disease severity of influenza and COVID-19.

3.
N Engl J Med ; 387(2): 109-119, 2022 07 14.
Article in English | MEDLINE | ID: covidwho-1900734

ABSTRACT

BACKGROUND: Infants younger than 6 months of age are at high risk for complications of coronavirus disease 2019 (Covid-19) and are not eligible for vaccination. Transplacental transfer of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after maternal Covid-19 vaccination may confer protection against Covid-19 in infants. METHODS: We used a case-control test-negative design to assess the effectiveness of maternal vaccination during pregnancy against hospitalization for Covid-19 among infants younger than 6 months of age. Between July 1, 2021, and March 8, 2022, we enrolled infants hospitalized for Covid-19 (case infants) and infants hospitalized without Covid-19 (control infants) at 30 hospitals in 22 states. We estimated vaccine effectiveness by comparing the odds of full maternal vaccination (two doses of mRNA vaccine) among case infants and control infants during circulation of the B.1.617.2 (delta) variant (July 1, 2021, to December 18, 2021) and the B.1.1.259 (omicron) variant (December 19, 2021, to March 8, 2022). RESULTS: A total of 537 case infants (181 of whom had been admitted to a hospital during the delta period and 356 during the omicron period; median age, 2 months) and 512 control infants were enrolled and included in the analyses; 16% of the case infants and 29% of the control infants had been born to mothers who had been fully vaccinated against Covid-19 during pregnancy. Among the case infants, 113 (21%) received intensive care (64 [12%] received mechanical ventilation or vasoactive infusions). Two case infants died from Covid-19; neither infant's mother had been vaccinated during pregnancy. The effectiveness of maternal vaccination against hospitalization for Covid-19 among infants was 52% (95% confidence interval [CI], 33 to 65) overall, 80% (95% CI, 60 to 90) during the delta period, and 38% (95% CI, 8 to 58) during the omicron period. Effectiveness was 69% (95% CI, 50 to 80) when maternal vaccination occurred after 20 weeks of pregnancy and 38% (95% CI, 3 to 60) during the first 20 weeks of pregnancy. CONCLUSIONS: Maternal vaccination with two doses of mRNA vaccine was associated with a reduced risk of hospitalization for Covid-19, including for critical illness, among infants younger than 6 months of age. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
COVID-19 Vaccines , COVID-19 , Hospitalization , Pregnancy Complications, Infectious , mRNA Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Female , Hospitalization/statistics & numerical data , Humans , Infant , Mothers , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , SARS-CoV-2 , Vaccination/statistics & numerical data , Vaccines, Synthetic , mRNA Vaccines/adverse effects , mRNA Vaccines/therapeutic use
4.
J Infect Dis ; 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1853098

ABSTRACT

BACKGROUND: The study objective was to evaluate 2 and 3 dose COVID-19 mRNA vaccine effectiveness (VE) in preventing COVID-19 hospitalization among adult solid organ transplant (SOT) recipients. METHODS: 21-site case-control analysis of 10,425 adults hospitalized March-December 2021. Cases were hospitalized with COVID-19; controls were hospitalized for an alternative diagnosis (SARS-CoV-2 negative). Participants were classified as: SOT recipient (n=440), other immunocompromising condition (n=1684), or immunocompetent (n=8301). VE against COVID-19 associated hospitalization was calculated as 1-adjusted odds ratio of prior vaccination among cases compared with controls. RESULTS: Among SOT recipients, VE was 29% (95% CI: -19 to 58%) for 2 doses and 77% (95% CI: 48 to 90%) for 3 doses. Among patients with other immunocompromising conditions, VE was 72% (95% CI: 64 to 79%) for 2 doses and 92% (95% CI: 85 to 95%) for 3 doses. Among immunocompetent patients, VE was 88% (95% CI: 87 to 90%) for 2 doses and 96% (95% CI: 83 to 99%) for 3 doses. CONCLUSION: Effectiveness of COVID-19 mRNA vaccines was lower for SOT recipients than immunocompetent people and those with other immunocompromising conditions. Among SOT recipients, vaccination with 3 doses of an mRNA vaccine led to substantially greater protection than 2 doses.

5.
N Engl J Med ; 386(20): 1899-1909, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1768968

ABSTRACT

BACKGROUND: Spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (omicron) variant, which led to increased U.S. hospitalizations for coronavirus disease 2019 (Covid-19), generated concern about immune evasion and the duration of protection from vaccines in children and adolescents. METHODS: Using a case-control, test-negative design, we assessed vaccine effectiveness against laboratory-confirmed Covid-19 leading to hospitalization and against critical Covid-19 (i.e., leading to receipt of life support or to death). From July 1, 2021, to February 17, 2022, we enrolled case patients with Covid-19 and controls without Covid-19 at 31 hospitals in 23 states. We estimated vaccine effectiveness by comparing the odds of antecedent full vaccination (two doses of BNT162b2 messenger RNA vaccine) at least 14 days before illness among case patients and controls, according to time since vaccination for patients 12 to 18 years of age and in periods coinciding with circulation of B.1.617.2 (delta) (July 1, 2021, to December 18, 2021) and omicron (December 19, 2021, to February 17, 2022) among patients 5 to 11 and 12 to 18 years of age. RESULTS: We enrolled 1185 case patients (1043 [88%] of whom were unvaccinated, 291 [25%] of whom received life support, and 14 of whom died) and 1627 controls. During the delta-predominant period, vaccine effectiveness against hospitalization for Covid-19 among adolescents 12 to 18 years of age was 93% (95% confidence interval [CI], 89 to 95) 2 to 22 weeks after vaccination and was 92% (95% CI, 80 to 97) at 23 to 44 weeks. Among adolescents 12 to 18 years of age (median interval since vaccination, 162 days) during the omicron-predominant period, vaccine effectiveness was 40% (95% CI, 9 to 60) against hospitalization for Covid-19, 79% (95% CI, 51 to 91) against critical Covid-19, and 20% (95% CI, -25 to 49) against noncritical Covid-19. During the omicron period, vaccine effectiveness against hospitalization among children 5 to 11 years of age was 68% (95% CI, 42 to 82; median interval since vaccination, 34 days). CONCLUSIONS: BNT162b2 vaccination reduced the risk of omicron-associated hospitalization by two thirds among children 5 to 11 years of age. Although two doses provided lower protection against omicron-associated hospitalization than against delta-associated hospitalization among adolescents 12 to 18 years of age, vaccination prevented critical illness caused by either variant. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Child , Child, Preschool , Critical Illness/therapy , Hospitalization , Humans , Vaccines, Synthetic/therapeutic use , /therapeutic use
6.
MMWR Morb Mortal Wkly Rep ; 70(42): 1483-1488, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1727005

ABSTRACT

Pfizer-BioNTech COVID-19 vaccine is authorized for use in children and adolescents aged 12-15 years and is licensed by the Food and Drug Administration (FDA) for persons aged ≥16 (1). A randomized placebo-controlled trial demonstrated an efficacy of 100% (95% confidence interval [CI] = 75.3%-100%) in preventing outpatient COVID-19 in persons aged 12-15 years (2); however, data among adolescents on vaccine effectiveness (VE) against COVID-19 in real-world settings are limited, especially among hospitalized patients. In early September 2021, U.S. pediatric COVID-19 hospitalizations reached the highest level during the pandemic (3,4). In a test-negative, case-control study at 19 pediatric hospitals in 16 states during June 1-September 30, 2021, the effectiveness of 2 doses of Pfizer-BioNTech vaccine against COVID-19 hospitalization was assessed among children and adolescents aged 12-18 years. Among 464 hospitalized persons aged 12-18 years (179 case-patients and 285 controls), the median age was 15 years, 72% had at least one underlying condition, including obesity, and 68% attended in-person school. Effectiveness of 2 doses of Pfizer-BioNTech vaccine against COVID-19 hospitalization was 93% (95% CI = 83%-97%), during the period when B.1.617.2 (Delta) was the predominant variant. This evaluation demonstrated that 2 doses of Pfizer-BioNTech vaccine are highly effective at preventing COVID-19 hospitalization among persons aged 12-18 years and reinforces the importance of vaccination to protect U.S. youths against severe COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Adolescent , COVID-19/epidemiology , Child , Female , Humans , Male , United States/epidemiology , Vaccines, Synthetic
7.
MMWR Morb Mortal Wkly Rep ; 71(7): 264-270, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1689712

ABSTRACT

COVID-19 vaccination is recommended for persons who are pregnant, breastfeeding, trying to get pregnant now, or who might become pregnant in the future, to protect them from COVID-19.§ Infants are at risk for life-threatening complications from COVID-19, including acute respiratory failure (1). Evidence from other vaccine-preventable diseases suggests that maternal immunization can provide protection to infants, especially during the high-risk first 6 months of life, through passive transplacental antibody transfer (2). Recent studies of COVID-19 vaccination during pregnancy suggest the possibility of transplacental transfer of SARS-CoV-2-specific antibodies that might provide protection to infants (3-5); however, no epidemiologic evidence currently exists for the protective benefits of maternal immunization during pregnancy against COVID-19 in infants. The Overcoming COVID-19 network conducted a test-negative, case-control study at 20 pediatric hospitals in 17 states during July 1, 2021-January 17, 2022, to assess effectiveness of maternal completion of a 2-dose primary mRNA COVID-19 vaccination series during pregnancy against COVID-19 hospitalization in infants. Among 379 hospitalized infants aged <6 months (176 with COVID-19 [case-infants] and 203 without COVID-19 [control-infants]), the median age was 2 months, 21% had at least one underlying medical condition, and 22% of case- and control-infants were born premature (<37 weeks gestation). Effectiveness of maternal vaccination during pregnancy against COVID-19 hospitalization in infants aged <6 months was 61% (95% CI = 31%-78%). Completion of a 2-dose mRNA COVID-19 vaccination series during pregnancy might help prevent COVID-19 hospitalization among infants aged <6 months.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunity, Maternally-Acquired , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , /immunology , Case-Control Studies , Female , Hospitals, Pediatric , Humans , Immunization, Passive , Infant , Infant, Newborn , Pregnancy , United States/epidemiology
8.
MMWR Morb Mortal Wkly Rep ; 71(2): 52-58, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1622893

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a severe postinfectious hyperinflammatory condition, which generally occurs 2-6 weeks after a typically mild or asymptomatic infection with SARS-CoV-2, the virus that causes COVID-19 (1-3). In the United States, the BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine is currently authorized for use in children and adolescents aged 5-15 years under an Emergency Use Authorization and is fully licensed by the Food and Drug Administration for persons aged ≥16 years (4). Prelicensure randomized trials in persons aged ≥5 years documented high vaccine efficacy and immunogenicity (5),§ and real-world studies in persons aged 12-18 years demonstrated high vaccine effectiveness (VE) against severe COVID-19 (6). Recent evidence suggests that COVID-19 vaccination is associated with lower MIS-C incidence among adolescents (7); however, VE of the 2-dose Pfizer-BioNTech regimen against MIS-C has not been evaluated. The effectiveness of 2 doses of Pfizer-BioNTech vaccine received ≥28 days before hospital admission in preventing MIS-C was assessed using a test-negative case-control design¶ among hospitalized patients aged 12-18 years at 24 pediatric hospitals in 20 states** during July 1-December 9, 2021, the period when most MIS-C patients could be temporally linked to SARS-CoV-2 B.1.617.2 (Delta) variant predominance. Patients with MIS-C (case-patients) and two groups of hospitalized controls matched to case-patients were evaluated: test-negative controls had at least one COVID-19-like symptom and negative SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) or antigen-based assay results, and syndrome-negative controls were hospitalized patients without COVID-19-like illness. Among 102 MIS-C case-patients and 181 hospitalized controls, estimated effectiveness of 2 doses of Pfizer-BioNTech vaccine against MIS-C was 91% (95% CI = 78%-97%). All 38 MIS-C patients requiring life support were unvaccinated. Receipt of 2 doses of the Pfizer-BioNTech vaccine is associated with a high level of protection against MIS-C in persons aged 12-18 years, highlighting the importance of vaccination among all eligible children.


Subject(s)
/therapeutic use , COVID-19/complications , Systemic Inflammatory Response Syndrome/drug therapy , Adolescent , COVID-19/drug therapy , Case-Control Studies , Child , Female , Hospitalization/statistics & numerical data , Humans , Male , Patient Acuity , SARS-CoV-2/immunology , United States/epidemiology
9.
N Engl J Med ; 386(8): 713-723, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1621316

ABSTRACT

BACKGROUND: The increasing incidence of pediatric hospitalizations associated with coronavirus disease 2019 (Covid-19) caused by the B.1.617.2 (delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United States has offered an opportunity to assess the real-world effectiveness of the BNT162b2 messenger RNA vaccine in adolescents between 12 and 18 years of age. METHODS: We used a case-control, test-negative design to assess vaccine effectiveness against Covid-19 resulting in hospitalization, admission to an intensive care unit (ICU), the use of life-supporting interventions (mechanical ventilation, vasopressors, and extracorporeal membrane oxygenation), or death. Between July 1 and October 25, 2021, we screened admission logs for eligible case patients with laboratory-confirmed Covid-19 at 31 hospitals in 23 states. We estimated vaccine effectiveness by comparing the odds of antecedent full vaccination (two doses of BNT162b2) in case patients as compared with two hospital-based control groups: patients who had Covid-19-like symptoms but negative results on testing for SARS-CoV-2 (test-negative) and patients who did not have Covid-19-like symptoms (syndrome-negative). RESULTS: A total of 445 case patients and 777 controls were enrolled. Overall, 17 case patients (4%) and 282 controls (36%) had been fully vaccinated. Of the case patients, 180 (40%) were admitted to the ICU, and 127 (29%) required life support; only 2 patients in the ICU had been fully vaccinated. The overall effectiveness of the BNT162b2 vaccine against hospitalization for Covid-19 was 94% (95% confidence interval [CI], 90 to 96); the effectiveness was 95% (95% CI, 91 to 97) among test-negative controls and 94% (95% CI, 89 to 96) among syndrome-negative controls. The effectiveness was 98% against ICU admission and 98% against Covid-19 resulting in the receipt of life support. All 7 deaths occurred in patients who were unvaccinated. CONCLUSIONS: Among hospitalized adolescent patients, two doses of the BNT162b2 vaccine were highly effective against Covid-19-related hospitalization and ICU admission or the receipt of life support. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
BNT162 Vaccine , COVID-19/prevention & control , Vaccine Efficacy , Adolescent , COVID-19/mortality , COVID-19/therapy , COVID-19 Testing , COVID-19 Vaccines , Case-Control Studies , Child , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Intensive Care Units , Life Support Care , Male , Patient Acuity , SARS-CoV-2 , United States
10.
MMWR Morb Mortal Wkly Rep ; 70(42): 1483-1488, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1485569

ABSTRACT

Pfizer-BioNTech COVID-19 vaccine is authorized for use in children and adolescents aged 12-15 years and is licensed by the Food and Drug Administration (FDA) for persons aged ≥16 (1). A randomized placebo-controlled trial demonstrated an efficacy of 100% (95% confidence interval [CI] = 75.3%-100%) in preventing outpatient COVID-19 in persons aged 12-15 years (2); however, data among adolescents on vaccine effectiveness (VE) against COVID-19 in real-world settings are limited, especially among hospitalized patients. In early September 2021, U.S. pediatric COVID-19 hospitalizations reached the highest level during the pandemic (3,4). In a test-negative, case-control study at 19 pediatric hospitals in 16 states during June 1-September 30, 2021, the effectiveness of 2 doses of Pfizer-BioNTech vaccine against COVID-19 hospitalization was assessed among children and adolescents aged 12-18 years. Among 464 hospitalized persons aged 12-18 years (179 case-patients and 285 controls), the median age was 15 years, 72% had at least one underlying condition, including obesity, and 68% attended in-person school. Effectiveness of 2 doses of Pfizer-BioNTech vaccine against COVID-19 hospitalization was 93% (95% CI = 83%-97%), during the period when B.1.617.2 (Delta) was the predominant variant. This evaluation demonstrated that 2 doses of Pfizer-BioNTech vaccine are highly effective at preventing COVID-19 hospitalization among persons aged 12-18 years and reinforces the importance of vaccination to protect U.S. youths against severe COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Adolescent , COVID-19/epidemiology , Child , Female , Humans , Male , United States/epidemiology , Vaccines, Synthetic
11.
MMWR Morb Mortal Wkly Rep ; 70(38): 1337-1343, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1436415

ABSTRACT

Three COVID-19 vaccines are authorized or approved for use among adults in the United States (1,2). Two 2-dose mRNA vaccines, mRNA-1273 from Moderna and BNT162b2 from Pfizer-BioNTech, received Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA) in December 2020 for persons aged ≥18 years and aged ≥16 years, respectively. A 1-dose viral vector vaccine (Ad26.COV2 from Janssen [Johnson & Johnson]) received EUA in February 2021 for persons aged ≥18 years (3). The Pfizer-BioNTech vaccine received FDA approval for persons aged ≥16 years on August 23, 2021 (4). Current guidelines from FDA and CDC recommend vaccination of eligible persons with one of these three products, without preference for any specific vaccine (4,5). To assess vaccine effectiveness (VE) of these three products in preventing COVID-19 hospitalization, CDC and collaborators conducted a case-control analysis among 3,689 adults aged ≥18 years who were hospitalized at 21 U.S. hospitals across 18 states during March 11-August 15, 2021. An additional analysis compared serum antibody levels (anti-spike immunoglobulin G [IgG] and anti-receptor binding domain [RBD] IgG) to SARS-CoV-2, the virus that causes COVID-19, among 100 healthy volunteers enrolled at three hospitals 2-6 weeks after full vaccination with the Moderna, Pfizer-BioNTech, or Janssen COVID-19 vaccine. Patients with immunocompromising conditions were excluded. VE against COVID-19 hospitalizations was higher for the Moderna vaccine (93%; 95% confidence interval [CI] = 91%-95%) than for the Pfizer-BioNTech vaccine (88%; 95% CI = 85%-91%) (p = 0.011); VE for both mRNA vaccines was higher than that for the Janssen vaccine (71%; 95% CI = 56%-81%) (all p<0.001). Protection for the Pfizer-BioNTech vaccine declined 4 months after vaccination. Postvaccination anti-spike IgG and anti-RBD IgG levels were significantly lower in persons vaccinated with the Janssen vaccine than the Moderna or Pfizer-BioNTech vaccines. Although these real-world data suggest some variation in levels of protection by vaccine, all FDA-approved or authorized COVID-19 vaccines provide substantial protection against COVID-19 hospitalization.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunocompromised Host/immunology , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
12.
MMWR Morb Mortal Wkly Rep ; 70(34): 1156-1162, 2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1374684

ABSTRACT

Real-world evaluations have demonstrated high effectiveness of vaccines against COVID-19-associated hospitalizations (1-4) measured shortly after vaccination; longer follow-up is needed to assess durability of protection. In an evaluation at 21 hospitals in 18 states, the duration of mRNA vaccine (Pfizer-BioNTech or Moderna) effectiveness (VE) against COVID-19-associated hospitalizations was assessed among adults aged ≥18 years. Among 3,089 hospitalized adults (including 1,194 COVID-19 case-patients and 1,895 non-COVID-19 control-patients), the median age was 59 years, 48.7% were female, and 21.1% had an immunocompromising condition. Overall, 141 (11.8%) case-patients and 988 (52.1%) controls were fully vaccinated (defined as receipt of the second dose of Pfizer-BioNTech or Moderna mRNA COVID-19 vaccines ≥14 days before illness onset), with a median interval of 65 days (range = 14-166 days) after receipt of second dose. VE against COVID-19-associated hospitalization during the full surveillance period was 86% (95% confidence interval [CI] = 82%-88%) overall and 90% (95% CI = 87%-92%) among adults without immunocompromising conditions. VE against COVID-19- associated hospitalization was 86% (95% CI = 82%-90%) 2-12 weeks and 84% (95% CI = 77%-90%) 13-24 weeks from receipt of the second vaccine dose, with no significant change between these periods (p = 0.854). Whole genome sequencing of 454 case-patient specimens found that 242 (53.3%) belonged to the B.1.1.7 (Alpha) lineage and 74 (16.3%) to the B.1.617.2 (Delta) lineage. Effectiveness of mRNA vaccines against COVID-19-associated hospitalization was sustained over a 24-week period, including among groups at higher risk for severe COVID-19; ongoing monitoring is needed as new SARS-CoV-2 variants emerge. To reduce their risk for hospitalization, all eligible persons should be offered COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , Time Factors , United States/epidemiology , Vaccines, Synthetic , Young Adult
13.
Emerg Infect Dis ; 27(5): 1505-1508, 2021 05.
Article in English | MEDLINE | ID: covidwho-1262597

ABSTRACT

We evaluated nucleic acid amplification testing (NAAT) for Zika virus on whole-blood specimens compared with NAAT on serum and urine specimens among asymptomatic pregnant women during the 2015-2016 Puerto Rico Zika outbreak. Using NAAT, more infections were detected in serum and urine than in whole blood specimens.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Disease Outbreaks , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Puerto Rico , Zika Virus Infection/epidemiology
14.
Clin Infect Dis ; 73(12): 2240-2247, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1246699

ABSTRACT

BACKGROUND: Novel coronavirus disease 2019 (COVID-19) is frequently compared with influenza. The Hospitalized Adult Influenza Vaccine Effectiveness Network (HAIVEN) conducts studies on the etiology and characteristics of U.S. hospitalized adults with influenza. It began enrolling patients with COVID-19 hospitalizations in March 2020. Patients with influenza were compared with those with COVID-19 in the first months of the U.S. epidemic. METHODS: Adults aged ≥ 18 years admitted to hospitals in 4 sites with acute respiratory illness were tested by real-time reverse transcription polymerase chain reaction for influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19. Demographic and illness characteristics were collected for influenza illnesses during 3 seasons 2016-2019. Similar data were collected on COVID-19 cases admitted before June 19, 2020. RESULTS: Age groups hospitalized with COVID-19 (n = 914) were similar to those admitted with influenza (n = 1937); 80% of patients with influenza and 75% of patients with COVID-19 were aged ≥50 years. Deaths from COVID-19 that occurred in younger patients were less often related to underlying conditions. White non-Hispanic persons were overrepresented in influenza (64%) compared with COVID-19 hospitalizations (37%). Greater severity and complications occurred with COVID-19 including more ICU admissions (AOR = 15.3 [95% CI: 11.6, 20.3]), ventilator use (AOR = 15.6 [95% CI: 10.7, 22.8]), 7 additional days of hospital stay in those discharged alive, and death during hospitalization (AOR = 19.8 [95% CI: 12.0, 32.7]). CONCLUSIONS: While COVID-19 can cause a respiratory illness like influenza, it is associated with significantly greater severity of illness, longer hospital stays, and higher in-hospital deaths.


Subject(s)
COVID-19 , Influenza, Human , Adult , Demography , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , United States/epidemiology
15.
MMWR Morb Mortal Wkly Rep ; 70(18): 674-679, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1218744

ABSTRACT

Adults aged ≥65 years are at increased risk for severe outcomes from COVID-19 and were identified as a priority group to receive the first COVID-19 vaccines approved for use under an Emergency Use Authorization (EUA) in the United States (1-3). In an evaluation at 24 hospitals in 14 states,* the effectiveness of partial or full vaccination† with Pfizer-BioNTech or Moderna vaccines against COVID-19-associated hospitalization was assessed among adults aged ≥65 years. Among 417 hospitalized adults aged ≥65 years (including 187 case-patients and 230 controls), the median age was 73 years, 48% were female, 73% were non-Hispanic White, 17% were non-Hispanic Black, 6% were Hispanic, and 4% lived in a long-term care facility. Adjusted vaccine effectiveness (VE) against COVID-19-associated hospitalization among adults aged ≥65 years was estimated to be 94% (95% confidence interval [CI] = 49%-99%) for full vaccination and 64% (95% CI = 28%-82%) for partial vaccination. These findings are consistent with efficacy determined from clinical trials in the subgroup of adults aged ≥65 years (4,5). This multisite U.S. evaluation under real-world conditions suggests that vaccination provided protection against COVID-19-associated hospitalization among adults aged ≥65 years. Vaccination is a critical tool for reducing severe COVID-19 in groups at high risk.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Aged , COVID-19/epidemiology , Female , Humans , Male , Risk Assessment , Treatment Outcome , United States/epidemiology , Vaccination Coverage/statistics & numerical data , Vaccines, Synthetic
16.
Influenza Other Respir Viruses ; 15(3): 345-351, 2021 05.
Article in English | MEDLINE | ID: covidwho-1010931

ABSTRACT

BACKGROUND: Symptoms of mild COVID-19 illness are non-specific and may persist for prolonged periods. Effects on quality of life of persistent poor physical or mental health associated with COVID-19 are not well understood. METHODS: Adults aged ≥18 years with laboratory-confirmed COVID-19 and matched control patients who tested negative for SARS-CoV-2 infection at outpatient facilities associated with 11 medical centers in the United States were interviewed to assess symptoms, illness duration, and health-related quality of life. Duration of symptoms, health-related quality of life measures, and days of poor physical health by symptoms experienced during illness were compared between case patients and controls using Wilcoxon rank-sum tests. Symptoms associated with COVID-19 case status were evaluated by multivariable logistic regression. RESULTS: Among 320 participants included, 157 were COVID-19 cases and 163 were SARS-CoV-2 negative controls. Loss of taste or smell was reported by 63% of cases and 6% of controls and was strongly associated with COVID-19 in logistic regression models (adjusted odds ratio [aOR] = 32.4; 95% confidence interval [CI], 12.6-83.1). COVID-19 cases were more likely than controls to have experienced fever, body aches, weakness, or fatigue during illness, and to report ≥1 persistent symptom more than 14 days after symptom onset (50% vs 32%, P < .001). Cases reported significantly more days of poor physical health during the past 14 days than controls (P < .01). CONCLUSIONS: Differentiating COVID-19 from other acute illnesses will require widespread diagnostic testing, especially during influenza seasons. Persistent COVID-19-related symptoms may negatively affect quality of life, even among those initially presenting with mild illness.


Subject(s)
COVID-19/psychology , Quality of Life , SARS-CoV-2 , Adult , Case-Control Studies , Female , Health Facilities , Humans , Logistic Models , Male , Middle Aged , Outpatients
17.
Matern Child Health J ; 25(2): 198-206, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1006455

ABSTRACT

INTRODUCTION: Public health responses often lack the infrastructure to capture the impact of public health emergencies on pregnant women and infants, with limited mechanisms for linking pregnant women with their infants nationally to monitor long-term effects. In 2019, the Centers for Disease Control and Prevention (CDC), in close collaboration with state, local, and territorial health departments, began a 5-year initiative to establish population-based mother-baby linked longitudinal surveillance, the Surveillance for Emerging Threats to Mothers and Babies Network (SET-NET). OBJECTIVES: The objective of this report is to describe an expanded surveillance approach that leverages and modernizes existing surveillance systems to address the impact of emerging health threats during pregnancy on pregnant women and their infants. METHODS: Mother-baby pairs are identified through prospective identification during pregnancy and/or identification of an infant with retrospective linking to maternal information. All data are obtained from existing data sources (e.g., electronic medical records, vital statistics, laboratory reports, and health department investigations and case reporting). RESULTS: Variables were selected for inclusion to address key surveillance questions proposed by CDC and health department subject matter experts. General variables include maternal demographics and health history, pregnancy and infant outcomes, maternal and infant laboratory results, and child health outcomes up to the second birthday. Exposure-specific modular variables are included for hepatitis C, syphilis, and Coronavirus Disease 2019 (COVID-19). The system is structured into four relational datasets (maternal, pregnancy outcomes and birth, infant/child follow-up, and laboratory testing). DISCUSSION: SET-NET provides a population-based mother-baby linked longitudinal surveillance approach and has already demonstrated rapid adaptation to COVID-19. This innovative approach leverages existing data sources and rapidly collects data and informs clinical guidance and practice. These data can help to reduce exposure risk and adverse outcomes among pregnant women and their infants, direct public health action, and strengthen public health systems.


Subject(s)
Civil Defense/methods , Mother-Child Relations , Population Surveillance/methods , Adult , COVID-19/complications , COVID-19/diagnosis , Civil Defense/instrumentation , Female , Hepatitis C/complications , Hepatitis C/diagnosis , Humans , Infant, Newborn , Mass Screening/methods , Pregnancy , Syphilis/complications , Syphilis/diagnosis
18.
MMWR Morb Mortal Wkly Rep ; 69(44): 1648-1653, 2020 Nov 06.
Article in English | MEDLINE | ID: covidwho-914858

ABSTRACT

Since March 2020, large-scale efforts to reduce transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), have continued. Mitigation measures to reduce workplace exposures have included work site policies to support flexible work site options, including telework, whereby employees work remotely without commuting to a central place of work.* Opportunities to telework have varied across industries among U.S. jobs where telework options are feasible (1). However, little is known about the impact of telework on risk for SARS-CoV-2 infection. A case-control investigation was conducted to compare telework between eligible symptomatic persons who received positive SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) test results (case-patients, 153) and symptomatic persons with negative test results (control-participants, 161). Eligible participants were identified in outpatient health care facilities during July 2020. Among employed participants who reported on their telework status during the 2 weeks preceding illness onset (248), the percentage who were able to telework on a full- or part-time basis was lower among case-patients (35%; 42 of 120) than among control-participants (53%; 68 of 128) (p<0.01). Case-patients were more likely than were control-participants to have reported going exclusively to an office or school setting (adjusted odds ratio [aOR] = 1.8; 95% confidence interval [CI] = 1.2-2.7) in the 2 weeks before illness onset. The association was also observed when further restricting to the 175 participants who reported working in a profession outside the critical infrastructure† (aOR = 2.1; 95% CI = 1.3-3.6). Providing the option to work from home or telework when possible, is an important consideration for reducing the risk for SARS-CoV-2 infection. In industries where telework options are not available, worker safety measures should continue to be scaled up to reduce possible worksite exposures.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Symptom Assessment , Telecommunications/statistics & numerical data , Work/statistics & numerical data , Adolescent , Adult , Ambulatory Care Facilities , COVID-19 , Case-Control Studies , Female , Humans , Male , Middle Aged , Pandemics , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL