Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Bioorg Chem ; 119: 105550, 2022 02.
Article in English | MEDLINE | ID: covidwho-1561636


Infectious diseases caused by new or unknown bacteria and viruses, such as anthrax, cholera, tuberculosis and even COVID-19, are a major threat to humanity. Thus, the development of new synthetic compounds with efficient antimicrobial activity is a necessity. Herein, rationally designed novel multifunctional cationic alternating copolymers were directly synthesized through a step-growth polymerization reaction using a bivalent electrophilic cross-linker containing disulfide bonds and a diamine heterocyclic ring. To optimize the activity of these alternating copolymers, several different diamines and cross-linkers were explored to find the highest antibacterial effects. The synthesized nanopolymers not only displayed good to excellent antibacterial activity as judged by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli, but also reduced the number of biofilm cells even at low concentrations, without killing mammalian cells. Furthermore, in vivo experiments using infected burn wounds in mice demonstrated good antibacterial activity and stimulated wound healing, without causing systemic inflammation. These findings suggest that the multifunctional cationic nanopolymers have potential as a novel antibacterial agent for eradication of multidrug resistant bacterial infections.

Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biofilms/drug effects , Cations/pharmacology , Polymers/pharmacology , Wound Healing/drug effects , Amines/chemistry , Animals , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/etiology , Burns/complications , COVID-19 , Cell Survival/drug effects , Cross-Linking Reagents , Drug Resistance, Multiple, Bacterial/drug effects , HEK293 Cells/drug effects , Humans , Mice , Microbial Sensitivity Tests , Polymers/chemistry
Nanomicro Lett ; 13(1): 18, 2021.
Article in English | MEDLINE | ID: covidwho-911984


A novel coronavirus of zoonotic origin (SARS-CoV-2) has recently been recognized in patients with acute respiratory disease. COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses. The drastic increase in the number of coronavirus and its genome sequence have given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses. Clinical tests like PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients. However, these techniques are expensive and not readily available for point-of-care (POC) applications. Currently, lack of any rapid, available, and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem. To solve the negative features of clinical investigation, we provide a brief introduction of the general features of coronaviruses and describe various amplification assays, sensing, biosensing, immunosensing, and aptasensing for the determination of various groups of coronaviruses applied as a template for the detection of SARS-CoV-2. All sensing and biosensing techniques developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus, i.e., SARS-CoV-2. Also, the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system to detect the virus at the early stage of infection to tranquilize the speed and vastity of spreading. Among other approaches investigated among molecular approaches and PCR or recognition of viral diseases, LAMP-based methods and LFAs are of great importance for their numerous benefits, which can be helpful to design a universal platform for detection of future emerging pathogenic viruses.