ABSTRACT
AIMS: To analyse if antidiabetic treatment was associated with better COVID-19 outcomes in type 2 diabetic patients, measured by hospital admission and mortality rates as severe outcomes. METHODS: Cohort study including COVID-19 patients registered in the Primary Care electronic records, in March-June 2020, comparing exposed to metformin in monotherapy with exposed to any other antidiabetic. DATA SOURCE: SIDIAP (Information System for Research in Primary Care), which captures clinical information of 5,8 million people from Catalonia, Spain. RESULTS: We included 31,006 diabetic patients infected with COVID-19, 43.7% previously exposed to metformin, 45.5% of them in monotherapy. 16.4% were admitted to hospital and 15.1% died. Users of insulin in monotherapy (OR 1.29, 95% CI 1.11-1.50), combined with metformin (OR 1.38, 1.13-1.69) or IDPP4 alone (OR 1.29, 1.03-1.63) had higher risk of severe outcomes than those in metformin monotherapy. Users of any insulin (OR 1.61, 1.32-1.97) or combined with metformin (OR 1.69, 1.30-2.20) had a higher risk of mortality. CONCLUSIONS: Patients receiving metformin monotherapy in our study showed a lower risk of hospitalization and death in comparison to those treated with other frequent antidiabetic agents. We cannot distinguish if better outcomes are related with the antidiabetic therapy or with other factors, such as metabolic control or interventions applied during the hospital admission.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Hypoglycemic Agents/adverse effects , Spain/epidemiology , Pandemics , Cohort Studies , COVID-19/epidemiology , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Metformin/adverse effects , Insulin/adverse effects , Primary Health CareABSTRACT
BACKGROUND: A possible link between influenza immunization and susceptibility to the complications of COVID-19 infection has been previously suggested owing to a boost in the immunity against SARS-CoV-2. OBJECTIVE: This study aimed to investigate whether individuals with COVID-19 could have benefited from vaccination against influenza. We hypothesized that the immunity resulting from the previous influenza vaccination would boost part of the immunity against SARS-CoV-2. METHODS: We performed a population-based cohort study including all patients with COVID-19 with registered entries in the primary health care (PHC) electronic records during the first wave of the COVID-19 pandemic (March 1 to June 30, 2020) in Catalonia, Spain. We compared individuals who took an influenza vaccine before being infected with COVID-19, with those who had not taken one. Data were obtained from Information System for Research in Primary Care, capturing PHC information of 5.8 million people from Catalonia. The main outcomes assessed during follow-up were a diagnosis of pneumonia, hospital admission, and mortality. RESULTS: We included 309,039 individuals with COVID-19 and compared them on the basis of their influenza immunization status, with 114,181 (36.9%) having been vaccinated at least once and 194,858 (63.1%) having never been vaccinated. In total, 21,721 (19%) vaccinated individuals and 11,000 (5.7%) unvaccinated individuals had at least one of their outcomes assessed. Those vaccinated against influenza at any time (odds ratio [OR] 1.14, 95% CI 1.10-1.19), recently (OR 1.13, 95% CI 1.10-1.18), or recurrently (OR 1.10, 95% CI 1.05-1.15) before being infected with COVID-19 had a higher risk of presenting at least one of the outcomes than did unvaccinated individuals. When we excluded people living in long-term care facilities, the results were similar. CONCLUSIONS: We could not establish a protective role of the immunity conferred by the influenza vaccine on the outcomes of COVID-19 infection, as the risk of COVID-19 complications was higher in vaccinated than in unvaccinated individuals. Our results correspond to the first wave of the COVID-19 pandemic, where more complications and mortalities due to COVID-19 had occurred. Despite that, our study adds more evidence for the analysis of a possible link between the quality of immunity and COVID-19 outcomes, particularly in the PHC setting.
Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2 , Cohort Studies , Primary Health Care , ElectronicsABSTRACT
Aims To analyse if antidiabetic treatment was associated with better COVID-19 outcomes in type 2 diabetic patients, measured by hospital admission and mortality rates as severe outcomes. Methods Cohort study including COVID-19 patients registered in the Primary Care electronic records, in March-June 2020, comparing exposed to metformin in monotherapy with exposed to any other antidiabetic. Data source: SIDIAP (Information System for Research in Primary Care), which captures clinical information of 5,8 million people from Catalonia, Spain. Results We included 31,006 diabetic patients infected with COVID-19, 43.7% previously exposed to metformin, 45.5% of them in monotherapy. 16.4% were admitted to hospital and 15.1% died. Users of insulin in monotherapy (OR 1.29, 95% CI 1.11-1.50), combined with metformin (OR 1.38, 1.13-1.69) or IDPP4 alone (OR 1.29, 1.03-1.63) had higher risk of severe outcomes than those in metformin monotherapy. Users of any insulin (OR 1.61, 1.32-1.97) or combined with metformin (OR 1.69, 1.30-2.20) had a higher risk of mortality. Conclusions Patients receiving metformin monotherapy in our study showed a lower risk of hospitalization and death in comparison to those treated with other frequent antidiabetic agents. We cannot distinguish if better outcomes are related with the antidiabetic therapy or with other factors, such as metabolic control or interventions applied during the hospital admission.
ABSTRACT
BACKGROUND: Understanding the immune response to the SARS-CoV-2 virus is critical for efficient monitoring and control strategies. The ProHEpic-19 cohort provides a fine-grained description of the kinetics of antibodies after SARS-CoV-2 infection with an exceptional resolution over 17 months. METHODS: We established a cohort of 769 healthcare workers including healthy and infected with SARS-CoV-2 in northern Barcelona to determine the kinetics of the IgM against the nucleocapsid (N) and the IgG against the N and spike (S) of SARS-CoV-2 in infected healthcare workers. The study period was from 5 May 2020 to 11 November 2021.We used non-linear mixed models to investigate the kinetics of IgG and IgM measured at nine time points over 17 months from the date of diagnosis. The model included factors of time, gender, and disease severity (asymptomatic, mild-moderate, severe-critical) to assess their effects and their interactions. FINDINGS: 474 of the 769 participants (61.6%) became infected with SARS-CoV-2. Significant effects of gender and disease severity were found for the levels of all three antibodies. Median IgM(N) levels were already below the positivity threshold in patients with asymptomatic and mild-moderate disease at day 270 after the diagnosis, while IgG(N and S) levels remained positive at least until days 450 and 270, respectively. Kinetic modelling showed a general rise in both IgM(N) and IgG(N) levels up to day 30, followed by a decay with a rate depending on disease severity. IgG(S) levels remained relatively constant from day 15 over time. INTERPRETATION: IgM(N) and IgG(N, S) SARS-CoV-2 antibodies showed a heterogeneous kinetics over the 17 months. Only the IgG(S) showed a stable increase, and the levels and the kinetics of antibodies varied according to disease severity. The kinetics of IgM and IgG observed over a year also varied by clinical spectrum can be very useful for public health policies around vaccination criteria in adult population. FUNDING: Regional Ministry of Health of the Generalitat de Catalunya (Call COVID19-PoC SLT16_04; NCT04885478).
Subject(s)
COVID-19 , Adult , Antibodies, Viral , COVID-19/epidemiology , Health Personnel , Humans , Immunity, Humoral , Immunoglobulin G , Immunoglobulin M , Pandemics , SARS-CoV-2 , Spain/epidemiologyABSTRACT
The role of T cells in the control of SARS-CoV-2 infection has been underestimated in favor of neutralizing antibodies. However, cellular immunity is essential for long-term viral control and protection from disease severity. To understand T-cell immunity in the absence of antibody generation we focused on a group of SARS-CoV-2 Non-Seroconvertors (NSC) recovered from infection. We performed an immune comparative analysis of SARS-CoV-2 infected individuals stratified by the absence or presence of seroconversion and disease severity. We report high levels of total naïve and low effector CD8+ T cells in NSC. Moreover, reduced levels of T-cell activation monitored by PD-1 and activation-induced markers were observed in the context of functional SARS-CoV-2 T-cell responses. Longitudinal data indicate the stability of the NSC phenotype over three months of follow-up after infection. Together, these data characterized distinctive immunological traits in NSC including skewed cellular distribution, low activation and functional SARS-CoV-2 T-cell responses. This data highlights the value of T-cell immune monitoring in populations with low seroconversion rates in response to SARS-CoV-2 infection and vaccination.
Subject(s)
COVID-19 , T-Lymphocytes , Humans , Immunity, Cellular , SARS-CoV-2 , VaccinationABSTRACT
BACKGROUND: The risk of thromboembolic events and COVID-19 complications in anticoagulated patients once hospitalized has been widely analyzed. We aim to assess these outcomes in primary health care (PHC) patients chronically treated with oral anticoagulants (OAC) in comparison with non-treated. METHODS: Cohort study including adults with COVID-19 diagnosis in the PHC records in Catalonia, Spain; from March to June 2020. Patients were matched between exposed and non-exposed to OAC based on age and gender in a 1:2 design. Data source is the Information System for Research in Primary Care (SIDIAP). RESULTS: We included 311,542 individuals with COVID-19. After propensity score matching, we obtained a cohort of 20,360 people, 10,180 exposed and 10,180 non-exposed to OAC. Their mean age was 79.9 and 52.1% were women. Patients exposed to OAC had a higher frequency of comorbidities than non-exposed. Anticoagulated patients had a higher risk of hospital admission (IRR 1.16, 95% CI 1.03-1.29), and of stroke and pulmonary embolism than non-anticoagulated (IRR 1,80, 95% CI 1.06-3.06). The risk of pneumonia was not different between groups (IRR 1.04, 95% CI 0.84-1.30). We found a lower risk of death in patients exposed to OAC (IRR 0.60, 95% CI 0.55-0.65). CONCLUSIONS: OAC users in our study had more comorbidities and were older than non-users, well known risks for hospitalization being confirmed with our results. We also found in our study that OAC exposure was not associated to an increased risk in the mortality rate, and it was associated with higher risks of hospital admission and thromboembolic events, although we cannot assess the effect of the interventions applied during hospital admission on the outcomes studied, as our database is a PHC database. TRIAL REGISTRATION: EUPAS register: EUPAS37205 .
Subject(s)
COVID-19 , Thrombosis , Adult , Anticoagulants/adverse effects , COVID-19/complications , COVID-19 Testing , Cohort Studies , Female , Humans , Male , Primary Health Care , SARS-CoV-2 , Spain/epidemiology , Thrombosis/epidemiologyABSTRACT
Data on convalescent plasma (CP) treatment in COVID-19 outpatients are scarce. We aimed to assess whether CP administered during the first week of symptoms reduced the disease progression or risk of hospitalization of outpatients. Two multicenter, double-blind randomized trials (NCT04621123, NCT04589949) were merged with data pooling starting when <20% of recruitment target was achieved. A Bayesian-adaptive individual patient data meta-analysis was implemented. Outpatients aged ≥50 years and symptomatic for ≤7days were included. The intervention consisted of 200-300mL of CP with a predefined minimum level of antibodies. Primary endpoints were a 5-point disease severity scale and a composite of hospitalization or death by 28 days. Amongst the 797 patients included, 390 received CP and 392 placebo; they had a median age of 58 years, 1 comorbidity, 5 days symptoms and 93% had negative IgG antibody-test. Seventy-four patients were hospitalized, 6 required mechanical ventilation and 3 died. The odds ratio (OR) of CP for improved disease severity scale was 0.936 (credible interval (CI) 0.667-1.311); OR for hospitalization or death was 0.919 (CI 0.592-1.416). CP effect on hospital admission or death was largest in patients with ≤5 days of symptoms (OR 0.658, 95%CI 0.394-1.085). CP did not decrease the time to full symptom resolution. TRIAL REGISTRATION: Clinicaltrials.gov NCT04621123 and NCT04589949. REGISTRATION: NCT04621123 and NCT04589949 on https://www. CLINICALTRIALS: gov.
Subject(s)
COVID-19 , Bayes Theorem , COVID-19/therapy , Humans , Immunization, Passive , Middle Aged , Multicenter Studies as Topic , Outpatients , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment OutcomeABSTRACT
BACKGROUND: Many countries have resumed mass-gathering events like music festivals, despite the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreading. In this study, we aimed to assess the effect of two mass-gathering outdoor events, held during a peak of SARS-CoV-2 transmission, on COVID-19 incidence. METHODS: This was a retrospective, population-based control-matched analysis. The study population included attendees to two outdoor music festivals held in Catalonia (North-East Spain). The primary objective was to compare the incidence of COVID-19 within the 3-to-10 days following the event between attendees and a population-based control group. FINDINGS: The analysis included 18,275 and 27,347 attendees to the first and second festivals, respectively, and their corresponding controls. The post-festival 7-day cumulative COVID-19 incidence among attendees and controls was 4.14% (95% CI 3.86-4.44) vs. 1.69% (1.51-1.88) for the first festival (RR 2.46; 2.16-2.80), and 2.42% (2.35-2.61) and 1.10% (0.99-1.2) for the second festival (RR 2.19; 1.92-2.51). COVID-19 incidence among immunized individuals was also two-fold higher in attendees than in controls. Previous COVID-19 infection, vaccination, and adequate mask-wearing were significantly associated with a lower risk of COVID-19 infection after the events. INTERPRETATION: Despite the proven effectiveness of preventive measures such as Ag-RDT screening, mask-wearing and vaccination, caution should be taken when holding these events during a period of high community SARS-CoV-2 transmission. FUNDING: Crowdfunding campaign YoMeCorono (https://www.yomecorono.com/) and the Generalitat de Catalunya.
ABSTRACT
BACKGROUND: Convalescent plasma has been proposed as an early treatment to interrupt the progression of early COVID-19 to severe disease, but there is little definitive evidence. We aimed to assess whether early treatment with convalescent plasma reduces the risk of hospitalisation and reduces SARS-CoV-2 viral load among outpatients with COVID-19. METHODS: We did a multicentre, double-blind, randomised, placebo-controlled trial in four health-care centres in Catalonia, Spain. Adult outpatients aged 50 years or older with the onset of mild COVID-19 symptoms 7 days or less before randomisation were eligible for enrolment. Participants were randomly assigned (1:1) to receive one intravenous infusion of either 250-300 mL of ABO-compatible high anti-SARS-CoV-2 IgG titres (EUROIMMUN ratio ≥6) methylene blue-treated convalescent plasma (experimental group) or 250 mL of sterile 0·9% saline solution (control). Randomisation was done with the use of a central web-based system with concealment of the trial group assignment and no stratification. To preserve masking, we used opaque tubular bags that covered the investigational product and the infusion catheter. The coprimary endpoints were the incidence of hospitalisation within 28 days from baseline and the mean change in viral load (in log10 copies per mL) in nasopharyngeal swabs from baseline to day 7. The trial was stopped early following a data safety monitoring board recommendation because more than 85% of the target population had received a COVID-19 vaccine. Primary efficacy analyses were done in the intention-to-treat population, safety was assessed in all patients who received the investigational product. This study is registered with ClinicalTrials.gov, NCT04621123. FINDINGS: Between Nov 10, 2020, and July 28, 2021, we assessed 909 patients with confirmed COVID-19 for inclusion in the trial, 376 of whom were eligible and were randomly assigned to treatment (convalescent plasma n=188 [serum antibody-negative n=160]; placebo n=188 [serum antibody-negative n=166]). Median age was 56 years (IQR 52-62) and the mean symptom duration was 4·4 days (SD 1·4) before random assignment. In the intention-to-treat population, hospitalisation within 28 days from baseline occurred in 22 (12%) participants who received convalescent plasma versus 21 (11%) who received placebo (relative risk 1·05 [95% CI 0·78 to 1·41]). The mean change in viral load from baseline to day 7 was -2·41 log10 copies per mL (SD 1·32) with convalescent plasma and -2·32 log10 copies per mL (1·43) with placebo (crude difference -0·10 log10 copies per mL [95% CI -0·35 to 0·15]). One participant with mild COVID-19 developed a thromboembolic event 7 days after convalescent plasma infusion, which was reported as a serious adverse event possibly related to COVID-19 or to the experimental intervention. INTERPRETATION: Methylene blue-treated convalescent plasma did not prevent progression from mild to severe illness and did not reduce viral load in outpatients with COVID-19. Therefore, formal recommendations to support the use of convalescent plasma in outpatients with COVID-19 cannot be concluded. FUNDING: Grifols, Crowdfunding campaign YoMeCorono.
Subject(s)
COVID-19 , Methylene Blue , Adult , COVID-19/therapy , COVID-19 Vaccines , Double-Blind Method , Humans , Immunization, Passive , Middle Aged , Outpatients , SARS-CoV-2 , Treatment OutcomeABSTRACT
We examined the correlation between previous antibiotic exposure and COVID-19 severity using a population-based observational matched cohort study with patient level data obtained for more than 5.8 million people registered in SIDIAP in Catalonia, Spain. We included all patients newly diagnosed with COVID-19 from March to June 2020 and identified all their antibiotic prescriptions in the previous two years. We used a composite severity endpoint, including pneumonia, hospital admission and death due to COVID-19. We examined the influence of high antibiotic exposure (>4 regimens), exposure to highest priority critically important antimicrobials (HPCIA) and recent exposure. Potential confounders were adjusted by logistic regression. A total of 280,679 patients were diagnosed with COVID-19, 146,656 of whom were exposed to at least one antibiotic course (52.3%) during the preceding two years. A total of 25,222 presented severe COVID-19 infection (9%), and the risk of severity was highest among those exposed to antibiotics (OR 1.12; 95% CI: 1.04-1.21). Among all individuals exposed to antibiotics, high, recent and exposure to HPCIAs were correlated with increased COVID severity (OR 1.19; 95% CI: 1.14-1.26; 1.41; 95% CI: 1.36-1.46; and 1.35; 95% CI: 1.30-1.40, respectively). Our findings confirm a significant correlation between previous antibiotic exposure and increased severity of COVID-19 disease.
ABSTRACT
BACKGROUND: Scarce data are available on what variables affect the risk of transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of symptomatic COVID-19, and, particularly, the relationship with viral load. We aimed to analyse data from linked index cases of COVID-19 and their contacts to explore factors associated with transmission of SARS-CoV-2. METHODS: In this cohort study, patients were recruited as part of a randomised controlled trial done between March 17 and April 28, 2020, that aimed to assess if hydroxychloroquine reduced transmission of SARS-CoV-2. Patients with COVID-19 and their contacts were identified by use of the electronic registry of the Epidemiological Surveillance Emergency Service of Catalonia (Spain). Patients with COVID-19 included in our analysis were aged 18 years or older, not hospitalised, had quantitative PCR results available at baseline, had mild symptom onset within 5 days before enrolment, and had no reported symptoms of SARS-CoV-2 infections in their accommodation or workplace within the 14 days before enrolment. Contacts included were adults with a recent history of exposure and absence of COVID-19-like symptoms within the 7 days preceding enrolment. Viral load of contacts, measured by quantitative PCR from a nasopharyngeal swab, was assessed at enrolment, at day 14, and whenever the participant reported COVID-19-like symptoms. We assessed risk of transmission and developing symptomatic disease and incubation dynamics using regression analysis. We assessed the relationship of viral load and characteristics of cases (age, sex, number of days from reported symptom onset, and presence or absence of fever, cough, dyspnoea, rhinitis, and anosmia) and associations between risk of transmission and characteristics of the index case and contacts. FINDINGS: We identified 314 patients with COVID-19, with 282 (90%) having at least one contact (753 contacts in total), resulting in 282 clusters. 90 (32%) of 282 clusters had at least one transmission event. The secondary attack rate was 17% (125 of 753 contacts), with a variation from 12% when the index case had a viral load lower than 1â×â106 copies per mL to 24% when the index case had a viral load of 1â×â1010 copies per mL or higher (adjusted odds ratio per log10 increase in viral load 1·3, 95% CI 1·1-1·5). Increased risk of transmission was also associated with household contact (3·0, 1·59-5·65) and age of the contact (per year: 1·02, 1·01-1·04). 449 contacts had a positive PCR result at baseline. 28 (6%) of 449 contacts had symptoms at the first visit. Of 421 contacts who were asymptomatic at the first visit, 181 (43%) developed symptomatic COVID-19, with a variation from approximately 38% in contacts with an initial viral load lower than 1â×â107 copies per mL to greater than 66% for those with an initial viral load of 1â×â1010 copies per mL or higher (hazard ratio per log10 increase in viral load 1·12, 95% CI 1·05-1·20; p=0·0006). Time to onset of symptomatic disease decreased from a median of 7 days (IQR 5-10) for individuals with an initial viral load lower than 1â×â107 copies per mL to 6 days (4-8) for those with an initial viral load between 1â×â107 and 1â×â109 copies per mL, and 5 days (3-8) for those with an initial viral load higher than 1â×â109 copies per mL. INTERPRETATION: In our study, the viral load of index cases was a leading driver of SARS-CoV-2 transmission. The risk of symptomatic COVID-19 was strongly associated with the viral load of contacts at baseline and shortened the incubation time of COVID-19 in a dose-dependent manner. FUNDING: YoMeCorono, Generalitat de Catalunya. TRANSLATIONS: For the Catalan translation of the abstract see Supplementary Materials section.
Subject(s)
COVID-19/transmission , SARS-CoV-2 , Adult , COVID-19/epidemiology , Cohort Studies , Female , Humans , Incidence , Male , Middle Aged , Spain/epidemiology , Viral LoadSubject(s)
COVID-19 , SARS-CoV-2 , Diagnostic Tests, Routine , Humans , Nasopharynx , RNA, Viral , Saliva , Specimen HandlingABSTRACT
BACKGROUND: Mass testing for early identification and isolation of infectious COVID-19 individuals is efficacious for reducing disease spread. Antigen-detecting rapid diagnostic tests (Ag-RDT) may be suitable for testing strategies; however, benchmark comparisons are scarce. METHODS: We used 286 nasopharyngeal specimens from unexposed asymptomatic individuals collected between December 2020 and January 2021 to assess five Ag-RDTs marketed by Abbott, Siemens, Roche Diagnostics, Lepu Medical, and Surescreen. RESULTS: For the overall sample, the performance parameters of Ag-RDTs were as follows: Abbott assay, sensitivity 38.6% (95%CI 29.1-48.8) and specificity 99.5% (97-100%); Siemens, sensitivity 51.5% (41.3-61.6) and specificity 98.4% (95.3-99.6); Roche, sensitivity 43.6% (33.7-53.8) and specificity 96.2% (92.4-98.5); Lepu, sensitivity 45.5% (35.6-55.8) and specificity 89.2% (83.8-93.3%); Surescreen, sensitivity 28.8% (20.2-38.6) and specificity 97.8% (94.5-99.4%). For specimens with cycle threshold (Ct) <30 in RT-qPCR, all Ag-RDT achieved a sensitivity ≥70%. The modelled negative- and positive-predictive value for 1% prevalence were >99% and <50%, respectively. CONCLUSIONS: When screening unexposed asymptomatic individuals, two Ag-RDTs achieved sensitivity ≥80% for specimens with Ct<30 and specificity ≥96%. The estimated negative predictive value suggests the suitability of Ag-RDTs for mass screenings of SARS-CoV-2 infection in the general population.