Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
MAbs ; 14(1): 2072455, 2022.
Article in English | MEDLINE | ID: covidwho-1839974

ABSTRACT

Many potent neutralizing SARS-CoV-2 antibodies have been developed and used for therapies. However, the effectiveness of many antibodies has been reduced against recently emerging SARS-CoV-2 variants, especially the Omicron variant. We identified a highly potent SARS-CoV-2 neutralizing antibody, UT28K, in COVID-19 convalescent individuals who recovered from a severe condition. UT28K showed efficacy in neutralizing SARS-CoV-2 in an in vitro assay and in vivo prophylactic treatment, and the reactivity to the Omicron strain was reduced. The structural analyses revealed that antibody UT28K Fab and SARS-CoV-2 RBD protein interactions were mainly chain-dominated antigen-antibody interactions. In addition, a mutation analysis suggested that the emergence of a UT28K neutralization-resistant SARS-CoV-2 variant was unlikely, as this variant would likely lose its competitive advantage over circulating SARS-CoV-2. Our data suggest that UT28K offers potent protection against SARS-CoV-2, including newly emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans
2.
Virol J ; 18(1): 16, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1059645

ABSTRACT

BACKGROUND: SARS-CoV-2 is a novel coronavirus that emerged in 2019 and is now classified in the genus Coronavirus with closely related SARS-CoV. SARS-CoV-2 is highly pathogenic in humans and is classified as a biosafety level (BSL)-3 pathogen, which makes manipulating it relatively difficult due to its infectious nature. METHODS: To circumvent the need for BSL-3 laboratories, an alternative assay was developed that avoids live virus and instead uses a recombinant VSV expressing luciferase and possesses the full length or truncated spike proteins of SARS-CoV-2. Furthermore, to measure SARS-CoV-2 neutralizing antibodies under BSL2 conditions, a chemiluminescence reduction neutralization test (CRNT) for SARS-CoV-2 was developed. The neutralization values of the serum samples collected from hospitalized patients with COVID-19 or SARS-CoV-2 PCR-negative donors against the pseudotyped virus infection evaluated by the CRNT were compared with antibody titers determined from an enzyme-linked immunosorbent assay (ELISA) or an immunofluorescence assay (IFA). RESULTS: The CRNT, which used whole blood collected from hospitalized patients with COVID-19, was also examined. As a result, the inhibition of pseudotyped virus infection was specifically observed in both serum and whole blood and was also correlated with the results of the IFA. CONCLUSIONS: In conclusion, the CRNT for COVID-19 is a convenient assay system that can be performed in a BSL-2 laboratory with high specificity and sensitivity for evaluating the occurrence of neutralizing antibodies against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , Cell Line , Convalescence , Humans , Inhibitory Concentration 50 , Luminescence , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Virol J ; 18(1): 16, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1024369

ABSTRACT

BACKGROUND: SARS-CoV-2 is a novel coronavirus that emerged in 2019 and is now classified in the genus Coronavirus with closely related SARS-CoV. SARS-CoV-2 is highly pathogenic in humans and is classified as a biosafety level (BSL)-3 pathogen, which makes manipulating it relatively difficult due to its infectious nature. METHODS: To circumvent the need for BSL-3 laboratories, an alternative assay was developed that avoids live virus and instead uses a recombinant VSV expressing luciferase and possesses the full length or truncated spike proteins of SARS-CoV-2. Furthermore, to measure SARS-CoV-2 neutralizing antibodies under BSL2 conditions, a chemiluminescence reduction neutralization test (CRNT) for SARS-CoV-2 was developed. The neutralization values of the serum samples collected from hospitalized patients with COVID-19 or SARS-CoV-2 PCR-negative donors against the pseudotyped virus infection evaluated by the CRNT were compared with antibody titers determined from an enzyme-linked immunosorbent assay (ELISA) or an immunofluorescence assay (IFA). RESULTS: The CRNT, which used whole blood collected from hospitalized patients with COVID-19, was also examined. As a result, the inhibition of pseudotyped virus infection was specifically observed in both serum and whole blood and was also correlated with the results of the IFA. CONCLUSIONS: In conclusion, the CRNT for COVID-19 is a convenient assay system that can be performed in a BSL-2 laboratory with high specificity and sensitivity for evaluating the occurrence of neutralizing antibodies against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , Cell Line , Convalescence , Humans , Inhibitory Concentration 50 , Luminescence , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL