ABSTRACT
Vaccination development and production was an essential question for the prevention and global control of COVID-19. The strong support from governing authorities such as Operation Warp Speed and robust funding has led to the development and authorization of the tozinameran (BNT162b2) vaccine. The BNT162b2 vaccine is a lipid nanoparticle-encapsulated mRNA that encodes for SARS-CoV-2 spike protein, the main site for neutralizing antibodies. Once it binds with the host cells, the lipid nanoparticles enable the transfer of the RNA, causing S antigens' expression of the SARS-CoV-2, conferring immunity. The vaccine is administered as a 2-dose regime 21 days apart for individuals 16 years and older. Pfizer-BioNTech's BNT162b2 vaccine was the first candidate to receive FDA-Emergency Use Authorization (EUA) on December 11, 2020. During phase 2/3 clinical trials, 95% efficacy was reported among 37,706 participants over the age of 16 who received the BNT162b2 vaccination; additionally, 52% efficacy was noted 12 days following the administration of the first dose of BNT162b2, reflecting early protection of COVID-19. The BNT162b2 vaccine has exhibited 100% efficacy in clinical trials of adolescents between the ages of 12 and 15. Clinical trials in pregnant women and children under the age of 12 are expected to also exhibit promising results. This review article encompasses tozinameran (BNT162b2) vaccine journey, summarizing the BNT162b1 and BNT162b2 vaccines from preclinical studies, clinical trial phases, dosages, immune response, adverse effects, and FDA-EUA.
Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Clinical Trials as Topic/methods , Drug Approval/methods , SARS-CoV-2/drug effects , Animals , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/metabolism , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/metabolism , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/metabolism , Clinical Trials as Topic/legislation & jurisprudence , Drug Approval/legislation & jurisprudence , Drug Evaluation, Preclinical/methods , Exanthema/chemically induced , Female , Humans , Male , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Vaccination/legislation & jurisprudence , Vaccination/methodsABSTRACT
Several neurological manifestations and complications linked to SARS-CoV-2 have been reported along with well-known respiratory pathology. The global active transmission of SARS-CoV-2 and its unexplained characteristics has led to a pandemic. Since its rapid emergence from Wuhan, China, in December 2019, several studies have reported the impacts of COVID-19 on the CNS and PNS and its implications. This comprehensive review article comprises case reports, case series, metaanalysis, cohort studies, retrospective studies, and narrative reviews focusing on COVID-19-associated CNS and PNS complexities. The authors searched for over 200 articles and used 52 publications related to the neurological complexities of COVID-19 affecting the CNS and PNS as part of the literature review process. The predominant CNS symptoms noted in COVID-19 patients were headaches and dizziness, and the most common PNS symptoms were alterations in smell and taste. Case reports on headache/dizziness, intracerebral hemorrhage, acute hemorrhagic necrotizing encephalopathy, meningitis/encephalitis, encephalopathy, cerebrovascular events, chemosensory dysfunction, Guillain-Barre syndrome, and acute transverse myelitis/acute necrotizing myelitis in PCR-confirmed SARS-CoV-2 subjects are also reported. New-onset neurological symptoms were also observed in children with PCR-confirmed SARS-CoV-2 that developed pediatric multisystem inflammatory syndrome (PIMS). This comprehensive review article will assist the clinicians and researchers to gain information about the neurological manifestations and complications associated with COVID-19 and develop planning to treat these symptoms in concerned patients of all ages. However, it is unclear whether SARS-CoV2-associated neurological effects are due to primary infections or secondary response to the possible mechanisms discussed in this review.
ABSTRACT
A novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in Wuhan, China, in December 2019. Since then, the virus has made its way across the globe to affect over 180 countries. SARS-CoV-2 has infected humans in all age groups, of all ethnicities, both males and females while spreading through communities at an alarming rate. Given the nature of this virus, there is much still to be learned; however, we know that the clinical manifestations range from a common cold to more severe diseases such as bronchitis, pneumonia, severe acute respiratory distress syndrome (ARDS), multi-organ failure, and even death. It is believed that COVID-19, in those with underlying health conditions or comorbidities, has an increasingly rapid and severe progression, often leading to death. This paper examined the comorbid conditions, the progression of the disease, and mortality rates in patients of all ages, infected with the ongoing COVID-19 disease. An electronic literature review search was performed, and applicable data was then collected from peer-reviewed articles published from January to April 20, 2020. From what is known at the moment, patients with COVID-19 disease who have comorbidities, such as hypertension or diabetes mellitus, are more likely to develop a more severe course and progression of the disease. Furthermore, older patients, especially those 65 years old and above who have comorbidities and are infected, have an increased admission rate into the intensive care unit (ICU) and mortality from the COVID-19 disease. Patients with comorbidities should take all necessary precautions to avoid getting infected with SARS CoV-2, as they usually have the worst prognosis.