Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Emerg Infect Dis ; 28(7): 1442-1445, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1847127

ABSTRACT

To detect new and changing SARS-CoV-2 variants, we investigated candidate Delta-Omicron recombinant genomes from Centers for Disease Control and Prevention national genomic surveillance. Laboratory and bioinformatic investigations identified and validated 9 genetically related SARS-CoV-2 viruses with a hybrid Delta-Omicron spike protein.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Computational Biology , Humans , SARS-CoV-2/genetics , United States/epidemiology
2.
Virus Evol ; 8(1): veac011, 2022.
Article in English | MEDLINE | ID: covidwho-1816262

ABSTRACT

In early 2020, as diagnostic and surveillance responses for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ramped up, attention focused primarily on returning international travelers. Here, we build on existing studies characterizing early patterns of SARS-CoV-2 spread within the USA by analyzing detailed clinical, molecular, and viral genomic data from the state of Georgia through March 2020. We find evidence for multiple early introductions into Georgia, despite relatively sparse sampling. Most sampled sequences likely stemmed from a single or small number of introductions from Asia three weeks prior to the state's first detected infection. Our analysis of sequences from domestic travelers demonstrates widespread circulation of closely related viruses in multiple US states by the end of March 2020. Our findings indicate that the exclusive focus on identifying SARS-CoV-2 in returning international travelers early in the pandemic may have led to a failure to recognize locally circulating infections for several weeks and point toward a critical need for implementing rapid, broadly targeted surveillance efforts for future pandemics.

3.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1687588

ABSTRACT

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Centers for Disease Control and Prevention, U.S. , Genomics , Humans , Prevalence , Public Health Surveillance/methods , United States/epidemiology
4.
MMWR Morb Mortal Wkly Rep ; 69(28): 918-922, 2020 Jul 17.
Article in English | MEDLINE | ID: covidwho-1389847

ABSTRACT

To limit introduction of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), the United States restricted travel from China on February 2, 2020, and from Europe on March 13. To determine whether local transmission of SARS-CoV-2 could be detected, the New York City (NYC) Department of Health and Mental Hygiene (DOHMH) conducted deidentified sentinel surveillance at six NYC hospital emergency departments (EDs) during March 1-20. On March 8, while testing availability for SARS-CoV-2 was still limited, DOHMH announced sustained community transmission of SARS-CoV-2 (1). At this time, twenty-six NYC residents had confirmed COVID-19, and ED visits for influenza-like illness* increased, despite decreased influenza virus circulation.† The following week, on March 15, when only seven of the 56 (13%) patients with known exposure histories had exposure outside of NYC, the level of community SARS-CoV-2 transmission status was elevated from sustained community transmission to widespread community transmission (2). Through sentinel surveillance during March 1-20, DOHMH collected 544 specimens from patients with influenza-like symptoms (ILS)§ who had negative test results for influenza and, in some instances, other respiratory pathogens.¶ All 544 specimens were tested for SARS-CoV-2 at CDC; 36 (6.6%) tested positive. Using genetic sequencing, CDC determined that the sequences of most SARS-CoV-2-positive specimens resembled those circulating in Europe, suggesting probable introductions of SARS-CoV-2 from Europe, from other U.S. locations, and local introductions from within New York. These findings demonstrate that partnering with health care facilities and developing the systems needed for rapid implementation of sentinel surveillance, coupled with capacity for genetic sequencing before an outbreak, can help inform timely containment and mitigation strategies.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Community-Acquired Infections/diagnosis , Community-Acquired Infections/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Sentinel Surveillance , Adolescent , Adult , Aged , COVID-19 , Child , Child, Preschool , Community-Acquired Infections/epidemiology , Coronavirus Infections/epidemiology , Emergency Service, Hospital , Female , Humans , Infant , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Sequence Analysis , Travel-Related Illness , Young Adult
5.
MMWR Morb Mortal Wkly Rep ; 70(23): 846-850, 2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1389869

ABSTRACT

SARS-CoV-2, the virus that causes COVID-19, is constantly mutating, leading to new variants (1). Variants have the potential to affect transmission, disease severity, diagnostics, therapeutics, and natural and vaccine-induced immunity. In November 2020, CDC established national surveillance for SARS-CoV-2 variants using genomic sequencing. As of May 6, 2021, sequences from 177,044 SARS-CoV-2-positive specimens collected during December 20, 2020-May 6, 2021, from 55 U.S. jurisdictions had been generated by or reported to CDC. These included 3,275 sequences for the 2-week period ending January 2, 2021, compared with 25,000 sequences for the 2-week period ending April 24, 2021 (0.1% and 3.1% of reported positive SARS-CoV-2 tests, respectively). Because sequences might be generated by multiple laboratories and sequence availability varies both geographically and over time, CDC developed statistical weighting and variance estimation methods to generate population-based estimates of the proportions of identified variants among SARS-CoV-2 infections circulating nationwide and in each of the 10 U.S. Department of Health and Human Services (HHS) geographic regions.* During the 2-week period ending April 24, 2021, the B.1.1.7 and P.1 variants represented an estimated 66.0% and 5.0% of U.S. SARS-CoV-2 infections, respectively, demonstrating the rise to predominance of the B.1.1.7 variant of concern† (VOC) and emergence of the P.1 VOC in the United States. Using SARS-CoV-2 genomic surveillance methods to analyze surveillance data produces timely population-based estimates of the proportions of variants circulating nationally and regionally. Surveillance findings demonstrate the potential for new variants to emerge and become predominant, and the importance of robust genomic surveillance. Along with efforts to characterize the clinical and public health impact of SARS-CoV-2 variants, surveillance can help guide interventions to control the COVID-19 pandemic in the United States.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , COVID-19/epidemiology , Epidemiological Monitoring , Humans , SARS-CoV-2/isolation & purification , United States/epidemiology
6.
J Infect Dis ; 224(2): 207-217, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1310923

ABSTRACT

We combined viral genome sequencing with contact tracing to investigate introduction and evolution of severe acute respiratory syndrome coronavirus 2 lineages in Santa Clara County, California, from 27 January to 21 March 2020. From 558 persons with coronavirus disease 2019, 101 genomes from 143 available clinical samples comprised 17 lineages, including SCC1 (n = 41), WA1 (n = 9; including the first 2 reported deaths in the United States, with postmortem diagnosis), D614G (n = 4), ancestral Wuhan Hu-1 (n = 21), and 13 others (n = 26). Public health intervention may have curtailed the persistence of lineages that appeared transiently during February and March. By August, only D614G lineages introduced after 21 March were circulating in Santa Clara County.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , Adult , Aged , COVID-19/prevention & control , California/epidemiology , Contact Tracing , Female , Genetic Variation , Genome, Viral/genetics , Genotype , Humans , Male , Middle Aged , Phylogeny , Risk Factors , SARS-CoV-2/classification , Travel , Young Adult
7.
J Infect Dis ; 224(2): 207-217, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1203708

ABSTRACT

We combined viral genome sequencing with contact tracing to investigate introduction and evolution of severe acute respiratory syndrome coronavirus 2 lineages in Santa Clara County, California, from 27 January to 21 March 2020. From 558 persons with coronavirus disease 2019, 101 genomes from 143 available clinical samples comprised 17 lineages, including SCC1 (n = 41), WA1 (n = 9; including the first 2 reported deaths in the United States, with postmortem diagnosis), D614G (n = 4), ancestral Wuhan Hu-1 (n = 21), and 13 others (n = 26). Public health intervention may have curtailed the persistence of lineages that appeared transiently during February and March. By August, only D614G lineages introduced after 21 March were circulating in Santa Clara County.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , Adult , Aged , COVID-19/prevention & control , California/epidemiology , Contact Tracing , Female , Genetic Variation , Genome, Viral/genetics , Genotype , Humans , Male , Middle Aged , Phylogeny , Risk Factors , SARS-CoV-2/classification , Travel , Young Adult
8.
J Infect Dis ; 223(5): 752-764, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-1117027

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to produce substantial morbidity and mortality. To understand the reasons for the wide-spectrum complications and severe outcomes of COVID-19, we aimed to identify cellular targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and replication in various tissues. METHODS: We evaluated RNA extracted from formalin-fixed, paraffin-embedded autopsy tissues from 64 case patients (age range, 1 month to 84 years; 21 COVID-19 confirmed, 43 suspected COVID-19) by SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR). For cellular localization of SARS-CoV-2 RNA and viral characterization, we performed in situ hybridization (ISH), subgenomic RNA RT-PCR, and whole-genome sequencing. RESULTS: SARS-CoV-2 was identified by RT-PCR in 32 case patients (21 COVID-19 confirmed, 11 suspected). ISH was positive in 20 and subgenomic RNA RT-PCR was positive in 17 of 32 RT-PCR-positive case patients. SARS-CoV-2 RNA was localized by ISH in hyaline membranes, pneumocytes, and macrophages of lungs; epithelial cells of airways; and endothelial cells and vessel walls of brain stem, leptomeninges, lung, heart, liver, kidney, and pancreas. The D614G variant was detected in 9 RT-PCR-positive case patients. CONCLUSIONS: We identified cellular targets of SARS-CoV-2 tropism and replication in the lungs and airways and demonstrated its direct infection in vascular endothelium. This work provides important insights into COVID-19 pathogenesis and mechanisms of severe outcomes.


Subject(s)
COVID-19/virology , Endothelium, Vascular/virology , Respiratory System/virology , SARS-CoV-2/physiology , Virus Replication , Adolescent , Adult , Aged , Aged, 80 and over , Autopsy , COVID-19/complications , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , Female , Humans , In Situ Hybridization , Infant , Lung/virology , Male , Middle Aged , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Tropism , Whole Genome Sequencing , Young Adult
9.
Emerg Infect Dis ; 27(2): 421-429, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1006452

ABSTRACT

To assess transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a detention facility experiencing a coronavirus disease outbreak and evaluate testing strategies, we conducted a prospective cohort investigation in a facility in Louisiana, USA. We conducted SARS-CoV-2 testing for detained persons in 6 quarantined dormitories at various time points. Of 143 persons, 53 were positive at the initial test, and an additional 58 persons were positive at later time points (cumulative incidence 78%). In 1 dormitory, all 45 detained persons initially were negative; 18 days later, 40 (89%) were positive. Among persons who were SARS-CoV-2 positive, 47% (52/111) were asymptomatic at the time of specimen collection; 14 had replication-competent virus isolated. Serial SARS-CoV-2 testing might help interrupt transmission through medical isolation and quarantine. Testing in correctional and detention facilities will be most effective when initiated early in an outbreak, inclusive of all exposed persons, and paired with infection prevention and control.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/epidemiology , Disease Outbreaks/statistics & numerical data , Disease Transmission, Infectious/statistics & numerical data , SARS-CoV-2/isolation & purification , Adult , COVID-19/diagnosis , COVID-19/transmission , Female , Humans , Incidence , Louisiana/epidemiology , Male , Prisons , Prospective Studies
11.
Emerg Infect Dis ; 26(10): 2401-2405, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-627407

ABSTRACT

We describe validated protocols for generating high-quality, full-length severe acute respiratory syndrome coronavirus 2 genomes from primary samples. One protocol uses multiplex reverse transcription PCR, followed by MinION or MiSeq sequencing; the other uses singleplex, nested reverse transcription PCR and Sanger sequencing. These protocols enable sensitive virus sequencing in different laboratory environments.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Pneumonia, Viral/virology , RNA, Viral/analysis , Sequence Analysis, RNA/methods , Whole Genome Sequencing/methods , COVID-19 , Multiplex Polymerase Chain Reaction , Pandemics , SARS-CoV-2
12.
Science ; 369(6503): 582-587, 2020 07 31.
Article in English | MEDLINE | ID: covidwho-591377

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, with >365,000 cases in California as of 17 July 2020. We investigated the genomic epidemiology of SARS-CoV-2 in Northern California from late January to mid-March 2020, using samples from 36 patients spanning nine counties and the Grand Princess cruise ship. Phylogenetic analyses revealed the cryptic introduction of at least seven different SARS-CoV-2 lineages into California, including epidemic WA1 strains associated with Washington state, with lack of a predominant lineage and limited transmission among communities. Lineages associated with outbreak clusters in two counties were defined by a single base substitution in the viral genome. These findings support contact tracing, social distancing, and travel restrictions to contain the spread of SARS-CoV-2 in California and other states.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Genome, Viral , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , COVID-19 , California/epidemiology , Coronavirus Infections/transmission , Epidemiological Monitoring , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Sequence Alignment , Ships , Travel , Washington
13.
Emerg Infect Dis ; 26(6): 1266-1273, 2020 06.
Article in English | MEDLINE | ID: covidwho-324432

ABSTRACT

The etiologic agent of an outbreak of pneumonia in Wuhan, China, was identified as severe acute respiratory syndrome coronavirus 2 in January 2020. A patient in the United States was given a diagnosis of infection with this virus by the state of Washington and the US Centers for Disease Control and Prevention on January 20, 2020. We isolated virus from nasopharyngeal and oropharyngeal specimens from this patient and characterized the viral sequence, replication properties, and cell culture tropism. We found that the virus replicates to high titer in Vero-CCL81 cells and Vero E6 cells in the absence of trypsin. We also deposited the virus into 2 virus repositories, making it broadly available to the public health and research communities. We hope that open access to this reagent will expedite development of medical countermeasures.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Animals , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Genome, Viral , Humans , Nasopharynx/virology , Oropharynx/virology , Pandemics , SARS-CoV-2 , Vero Cells , Viral Tropism , Virus Replication , Washington
SELECTION OF CITATIONS
SEARCH DETAIL