Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
The Lancet. Infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-1837602

ABSTRACT

Background Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19. Methods The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 μg in 0·30 mL;full dose) or mRNA-1273 (Moderna;50 μg in 0·25 mL;half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (anti-spike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing. Findings Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6–77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3–214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030–27 162), which increased to 37 460 ELU/mL (31 996–43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41–1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996–30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826–64 452), with a geometric mean fold change of 2·19 (1·90–2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37–14·32) and 15·90 (12·92–19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24–16·54] in the BNT162b2 group and 6·22 [3·90–9·92] in the mRNA-1273 group). Interpretation Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose. Funding UK Vaccine Task Force and National Institute for Health Research.

2.
J Infect ; 2022 Apr 09.
Article in English | MEDLINE | ID: covidwho-1778315

ABSTRACT

OBJECTIVES: To evaluate the persistence of immunogenicity three months after third dose boosters. METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose. The analysis was conducted using all randomised participants who were SARS-CoV-2 naïve during the study. RESULTS: Amongst the 2883 participants randomised, there were 2422 SARS-CoV-2 naïve participants until D84 visit included in the analysis with median age of 70 (IQR: 30-94) years. In the participants who had two initial doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd), schedules using mRNA vaccines as third dose have the highest anti-spike IgG at D84 (e.g. geometric mean concentration of 8674 ELU/ml (95% CI: 7461-10,085) following ChAd/ChAd/BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT)). However, in people who had two initial doses of BNT there was no significant difference at D84 in people given ChAd versus BNT (geometric mean ratio (GMR) of 0.95 (95%CI: 0.78, 1.15). Also, people given Ad26.COV2.S (Janssen; hereafter referred to as Ad26) as a third dose had significantly higher anti-spike IgG at D84 than BNT (GMR of 1.20, 95%CI: 1.01,1.43). Responses at D84 between people who received BNT (15 µg) or BNT (30 µg) after ChAd/ChAd or BNT/BNT were similar, with anti-spike IgG GMRs of half-BNT (15 µg) versus BNT (30 µg) ranging between 0.74-0.86. The decay rate of cellular responses were similar between all the vaccine schedules and doses. CONCLUSIONS: 84 days after a third dose of COVID-19 vaccine the decay rates of humoral response were different between vaccines. Adenoviral vector vaccine anti-spike IgG concentrations at D84 following BNT/BNT initial doses were similar to or even higher than for a three dose (BNT/BNT/BNT) schedule. Half dose BNT immune responses were similar to full dose responses. While high antibody tires are desirable in situations of high transmission of new variants of concern, the maintenance of immune responses that confer long-lasting protection against severe disease or death is also of critical importance. Policymakers may also consider adenoviral vector, fractional dose of mRNA, or other non-mRNA vaccines as third doses.

4.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-332455

ABSTRACT

Background: Many high-income countries have deployed third “booster” doses of COVID-19 vaccines to populations and some countries have started offering fourth doses. Methods: The COV-BOOST trial is a multicentre, randomised, controlled, phase II trial of seven COVID-19 vaccines as third dose boosters. The current study invited participants who received BNT162b2 (BNT) as third dose in COV-BOOST to be randomised to receive a fourth dose of BNT or mRNA1273 (50 µg, half-m1273). The COV-BOOST trial is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose. Results: Between 11 and 25 January 2022, 166 participants in the original BNT arm were randomised and received a fourth dose vaccine. The median age was 70.1 (interquartile range: 51.6-77.5) years with 51.8 % (n=86) female participants. The median interval between third and fourth dose was 208.5 (interquartile range: 203.25-214.75) days.Pain and fatigue were the most common local and systemic solicited adverse events for BNT and half-m1273. None of three serious adverse events reported after a fourth dose were related to study vaccine.The fold rises in anti-spike IgG pre- and post-fourth dose were 12.19 (95%CI: 10.37-14.32) and 15.90 (95%CI: 12.92-19.58) in BNT and half-m1273 arms respectively, with fold changes compared to the post third dose-peak of 1.59 (95%CI: 1.41-1.78) and 2.19 (95%CI: 1.90-2.52). T cell responses also boosted. Conclusions: Fourth dose COVID-19 mRNA booster vaccines are well-tolerated and boost cellular and humoral immunity up to, and beyond peak levels achieved following third dose boosters (ISRCTN: 73765130).

7.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329174

ABSTRACT

Background: Tests that can diagnose COVID-19 rapidly and predict prognosis would be significantly beneficial. We studied the ability of breath analysis using gas chromatography-ion mobility spectrometry (GC-IMS) for diagnosis of COVID-19 and as a predictor for subsequent requirement for Continuous Positive Airway Pressure (CPAP). Methods We undertook a single centre prospective observational study in patients with COVID-19, other respiratory tract infections and healthy controls. Participants provided one breath sample for GC-IMS analysis. We used cross validation analysis to create models that were then tested against the original cohort data. Further multivariable analysis was undertaken to adjust for differences between the comparator groups. Results Between 01/02/2021 and 24/05/2021 we recruited 113 participants, of whom 72 (64%) had COVID-19, 20 (18%) had another respiratory tract infection and 21 (19%) were healthy controls. Differentiation between patients with COVID-19 and healthy controls, and patients with COVID-19 and those with other respiratory tract infections, was achieved with high accuracy. Identification of patients with subsequent requirement for CPAP was completed with moderate accuracy and was not independently associated on multivariable analysis. Conclusions We have shown that GC-IMS has a high capability to distinguish between acute COVID-19 infection and other disease states. Breath analysis shows promise as a predictor of subsequent requirement for CPAP in hospitalised patients with COVID-19. This platform has considerable benefits due to the test being rapid, non-invasive and not requiring specialist laboratory processing.

8.
Ther Adv Infect Dis ; 9: 20499361221074569, 2022.
Article in English | MEDLINE | ID: covidwho-1666600

ABSTRACT

BACKGROUND/AIMS: Data concerning differences in demographics/disease severity between the first and second waves of COVID-19 are limited. We aimed to examine prognosis in patients presenting to hospital with COVID-19 amongst different ethnic groups between the first and second waves in the UK. METHODS: In this retrospective cohort study, we included 1763 patients presenting to a regional hospital centre in Leicester (UK) and compared those in the first (n = 956) and second (n = 807) waves. Admission National Early Warning Scores, mechanical ventilation and mortality rate were lower in the second wave compared with the first. RESULTS: Thirty-day mortality risk in second wave patients was approximately half that of first wave patients [adjusted hazard ratio (aHR) 0.55, 95% confidence interval (CI) 0.40-0.75]. In the second wave, Black patients were at higher risk of 30-day mortality than White patients (4.73, 1.56-14.3). CONCLUSION: We found that disporportionately higher risks of death in patients from ethnic minority groups were not equivalent across consecutive waves of the pandemic. This suggests that risk factors for death in those from ethnic minority groups are malleable and potentially reversible. Our findings need urgent investigation in larger studies.

11.
Cell ; 2022.
Article in English | EuropePMC | ID: covidwho-1601904

ABSTRACT

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses. A comprehensive analysis of sera from vaccinees, convalescent patients infected previously by multiple variants and potent monoclonal antibodies from early in the COVID-19 pandemic reveals a substantial overall reduction the ability to neutralize the SARS-CoV-2 Omicron variant, which a third vaccine dose seems to ameliorate. Structural analyses of the Omicron RBD suggest a selective pressure enabling the virus bind ACE2 with increased affinity that is offset by other changes in the receptor binding motif that facilitates immune escape.

13.
Lancet ; 398(10318): 2258-2276, 2021 12 18.
Article in English | MEDLINE | ID: covidwho-1550152

ABSTRACT

BACKGROUND: Few data exist on the comparative safety and immunogenicity of different COVID-19 vaccines given as a third (booster) dose. To generate data to optimise selection of booster vaccines, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT). METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of third dose booster vaccination against COVID-19. Participants were aged older than 30 years, and were at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary COVID-19 immunisation course, with no history of laboratory-confirmed SARS-CoV-2 infection. 18 sites were split into three groups (A, B, and C). Within each site group (A, B, or C), participants were randomly assigned to an experimental vaccine or control. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY)control (1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26.COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or MenACWY (1:1:1:1). Participants and all investigatory staff were blinded to treatment allocation. Coprimary outcomes were safety and reactogenicity and immunogenicity of anti-spike IgG measured by ELISA. The primary analysis for immunogenicity was on a modified intention-to-treat basis; safety and reactogenicity were assessed in the intention-to-treat population. Secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ISRCTN, number 73765130. FINDINGS: Between June 1 and June 30, 2021, 3498 people were screened. 2878 participants met eligibility criteria and received COVID-19 vaccine or control. The median ages of ChAd/ChAd-primed participants were 53 years (IQR 44-61) in the younger age group and 76 years (73-78) in the older age group. In the BNT/BNT-primed participants, the median ages were 51 years (41-59) in the younger age group and 78 years (75-82) in the older age group. In the ChAd/ChAD-primed group, 676 (46·7%) participants were female and 1380 (95·4%) were White, and in the BNT/BNT-primed group 770 (53·6%) participants were female and 1321 (91·9%) were White. Three vaccines showed overall increased reactogenicity: m1273 after ChAd/ChAd or BNT/BNT; and ChAd and Ad26 after BNT/BNT. For ChAd/ChAd-primed individuals, spike IgG geometric mean ratios (GMRs) between study vaccines and controls ranged from 1·8 (99% CI 1·5-2·3) in the half VLA group to 32·3 (24·8-42·0) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·1 (95% CI 0·7-1·6) for ChAd to 3·6 (2·4-5·5) for m1273. For BNT/BNT-primed individuals, spike IgG GMRs ranged from 1·3 (99% CI 1·0-1·5) in the half VLA group to 11·5 (9·4-14·1) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·0 (95% CI 0·7-1·6) for half VLA to 4·7 (3·1-7·1) for m1273. The results were similar between those aged 30-69 years and those aged 70 years and older. Fatigue and pain were the most common solicited local and systemic adverse events, experienced more in people aged 30-69 years than those aged 70 years or older. Serious adverse events were uncommon, similar in active vaccine and control groups. In total, there were 24 serious adverse events: five in the control group (two in control group A, three in control group B, and zero in control group C), two in Ad26, five in VLA, one in VLA-half, one in BNT, two in BNT-half, two in ChAd, one in CVn, two in NVX, two in NVX-half, and one in m1273. INTERPRETATION: All study vaccines boosted antibody and neutralising responses after ChAd/ChAd initial course and all except one after BNT/BNT, with no safety concerns. Substantial differences in humoral and cellular responses, and vaccine availability will influence policy choices for booster vaccination. FUNDING: UK Vaccine Taskforce and National Institute for Health Research.


Subject(s)
/administration & dosage , COVID-19/prevention & control , Immunization, Secondary/methods , Immunogenicity, Vaccine , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Female , Humans , Male , Middle Aged , Pandemics , Patient Safety , SARS-CoV-2 , United Kingdom
17.
Postgrad Med J ; 98(1159): 360-364, 2022 May.
Article in English | MEDLINE | ID: covidwho-1208992

ABSTRACT

INTRODUCTION: Awake prone positioning (APP) might benefit patients with COVID-19 by improving oxygenation, but it is unknown whether this improvement can be sustained with serial proning episodes. METHODS: We conducted a retrospective review of adults with COVID-19 admitted to one intensive care unit, in those who underwent APP and controls. Patients in both groups had type 1 respiratory failure requiring oxygen (but not initially intubated), confirmed SARS-CoV-2 PCR by nasopharyngeal swab and findings of multifocal ground-glass opacities on imaging. For the APP group, serial SpO2/FiO2 measurements were recorded after each proning episode. RESULTS: Of 77 patients admitted, 50 (65%) were excluded because they had already been intubated. Another 7 (9%) had undergone APP prior to admission. Of the remaining 20, 10 underwent APP and 10 were controls. Patients in both groups had similar demographics, subsequent intubation and survival. Of those who underwent APP, SpO2/FiO2 was most likely to increase after the first episode (before median: 152, IQR 135-185; after: median 192, IQR 156-234, p=0.04). Half of participants (5) in the APP group were unable to tolerate more than two APP episodes. CONCLUSIONS: Most patients with COVID-19 admitted to the intensive care are not suitable for APP. Of those who are, many cannot tolerate more than two episodes. Improvements in SpO2/FiO2 secondary to APP are transient and most likely in the first episode. Our findings may explain why other studies have failed to show improvements in mortality from APP despite improvements in oxygenation.


Subject(s)
COVID-19 , Adult , COVID-19/therapy , Critical Care , Humans , Intensive Care Units , Prone Position , SARS-CoV-2 , Wakefulness
18.
Clin Med (Lond) ; 21(3): e295-e299, 2021 05.
Article in English | MEDLINE | ID: covidwho-1171932

ABSTRACT

The new variant of concern (VOC), B.1.1.7, has a distinct set of mutations in nucleotides encoding the spike (S) protein on the surface of SARS-CoV-2. SARS-CoV-2 previously accumulated mutations at a much slower rate, of 1-2 per month; the sudden appearance of a large cluster of mutations was thought to be unusual. We now suspect that VOC may have arisen from immunosuppressed individuals who shed virus for longer periods. Epidemiological analyses estimate VOC to be more infectious; this is of most concern because these estimates were calculated during periods where many regions of the UK were in high social distancing restrictions. Therefore, the previous 'tiered' system implemented in the UK was ineffective at containing VOC. The most likely reason for this is that previous restrictions, no matter how strict, still allowed for gatherings in certain places. VOC also has implications for the national vaccination programme - a higher proportion of people will need to be vaccinated with a more infectious virus. Prolongation of the second dose of vaccines to increase vaccine uptake has understandably caused concern, but is based on sound immunological principles. There is now an urgent need to monitor the effect of new variants on vaccine efficacy - marking a new chapter in the global fight against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Communicable Disease Control , Humans , United Kingdom/epidemiology
19.
J Infect ; 82(6): 253-259, 2021 06.
Article in English | MEDLINE | ID: covidwho-1152506

ABSTRACT

BACKGROUND: Human to human transmission of SARS-CoV-2 is driven by the respiratory route but little is known about the pattern and quantity of virus output from exhaled breath. We have previously shown that face-mask sampling (FMS) can detect exhaled tubercle bacilli and have adapted its use to quantify exhaled SARS-CoV-2 RNA in patients admitted to hospital with Coronavirus Disease-2019 (COVID-19). METHODS: Between May and December 2020, we took two concomitant FMS and nasopharyngeal samples (NPS) over two days, starting within 24 h of a routine virus positive NPS in patients hospitalised with COVID-19, at University Hospitals of Leicester NHS Trust, UK. Participants were asked to wear a modified duckbilled facemask for 30 min, followed by a nasopharyngeal swab. Demographic, clinical, and radiological data, as well as International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) mortality and deterioration scores were obtained. Exposed masks were processed by removal, dissolution and analysis of sampling matrix strips fixed within the mask by RT-qPCR. Viral genome copy numbers were determined and results classified as Negative; Low: ≤999 copies; Medium: 1000-99,999 copies and High ≥ 100,000 copies per strip for FMS or per 100 µl for NPS. RESULTS: 102 FMS and NPS were collected from 66 routinely positive patients; median age: 61 (IQR 49 - 77), of which FMS was positive in 38% of individuals and concomitant NPS was positive in 50%. Positive FMS viral loads varied over five orders of magnitude (<10-3.3 x 106 genome copies/strip); 21 (32%) patients were asymptomatic at the time of sampling. High FMS viral load was associated with respiratory symptoms at time of sampling and shorter interval between sampling and symptom onset (FMS High: median (IQR) 2 days (2-3) vs FMS Negative: 7 days (7-10), p = 0.002). On multivariable linear regression analysis, higher FMS viral loads were associated with higher ISARIC mortality (Medium FMS vs Negative FMS gave an adjusted coefficient of 15.7, 95% CI 3.7-27.7, p = 0.01) and deterioration scores (High FMS vs Negative FMS gave an adjusted coefficient of 37.6, 95% CI 14.0 to 61.3, p = 0.002), while NPS viral loads showed no significant association. CONCLUSION: We demonstrate a simple and effective method for detecting and quantifying exhaled SARS-CoV-2 in hospitalised patients with COVID-19. Higher FMS viral loads were more likely to be associated with developing severe disease compared to NPS viral loads. Similar to NPS, FMS viral load was highest in early disease and in those with active respiratory symptoms, highlighting the potential role of FMS in understanding infectivity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Masks , Middle Aged , RNA, Viral , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL