Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Microbiol ; 13: 907422, 2022.
Article in English | MEDLINE | ID: covidwho-1903085

ABSTRACT

Understanding the process of replication and transcription of SARS-CoV-2 is essential for antiviral strategy development. The replicase polyprotein is indispensable for viral replication. However, whether all nsps derived from the replicase polyprotein of SARS-CoV-2 are indispensable is not fully understood. In this study, we utilized the SARS-CoV-2 replicon as the system to investigate the role of each nsp in viral replication. We found that except for nsp16, all the nsp deletions drastically impair the replication of the replicon, and nsp14 could recover the replication deficiency caused by its deletion in the viral replicon. Due to the unsuccessful expressions of nsp1, nsp3, and nsp16, we could not draw a conclusion about their in trans-rescue functions. Our study provided a new angle to understand the role of each nsp in viral replication and transcription, helping the evaluation of nsps as the target for antiviral drug development.

2.
J Inorg Biochem ; 231: 111777, 2022 06.
Article in English | MEDLINE | ID: covidwho-1873158

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic is currently the major challenge to global public health. Two proteases, papain-like protease (PLpro) and the 3-chymotrypsin-like protease (3CLpro or Mpro), are indispensable for SARS-CoV-2 replication, making them attractive targets for antiviral therapy development. Here we screened a panel of essential metal ions using a proteolytic assay and identified that zinc gluconate, a widely-used zinc supplement, strongly inhibited the proteolytic activities of the two proteases in vitro. Biochemical and crystallographic data reveal that zinc gluconate exhibited the inhibitory function via binding to the protease catalytic site residues. We further show that treatment of zinc gluconate in combination with a small molecule ionophore hinokitiol, could lead to elevated intracellular Zn2+ level and thereby significantly impaired the two protease activities in cellulo. Particularly, this approach could also be applied to rescue SARS-CoV-2 infected mammalian cells, indicative of potential application to combat coronavirus infections. Our studies provide the direct experimental evidence that elevated intracellular zinc concentration directly inhibits SARS-CoV-2 replication and suggest the potential benefits to use the zinc supplements for coronavirus disease 2019 (COVID-19) treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Gluconates , Mammals/metabolism , Monoterpenes , Peptide Hydrolases/metabolism , Tropolone/analogs & derivatives , Zinc/pharmacology
3.
J Med Virol ; 94(9): 4193-4205, 2022 09.
Article in English | MEDLINE | ID: covidwho-1844142

ABSTRACT

As one of the most rapidly evolving proteins of the genus Betacoronavirus, open reading frames (ORF8's) function and potential pathological consequence in vivo are still obscure. In this study, we show that the secretion of ORF8 is dependent on its N-terminal signal peptide sequence and can be inhibited by reactive oxygen species scavenger and endoplasmic reticulum-Golgi transportation inhibitor in cultured cells. To trace the effect of its possible in vivo secretion, we examined the plasma samples of coronavirus disease 2019 (COVID-19) convalescent patients and found that the patients aged from 40 to 60 had higher antibody titers than those under 40. To explore ORF8's in vivo function, we administered the mice with ORF8 via tail-vein injection to simulate the circulating ORF8 in the patient. Although no apparent difference in body weight, food intake, and vitality was detected between vehicle- and ORF8-treated mice, the latter displayed morphological abnormalities of testes and epididymides, as indicated by the loss of the central ductal lumen accompanied by a decreased fertility in 5-week-old male mice. Furthermore, the analysis of gene expression in the testes between vehicle- and ORF8-treated mice identified a decreased expression of Col1a1, the loss of which is known to be associated with mice's infertility. Although whether our observation in mice could be translated to humans remains unclear, our study provides a potential mouse model that can be used to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the human reproductive system.


Subject(s)
COVID-19 , Infertility, Male , SARS-CoV-2 , Viral Proteins , Amino Acid Sequence , Animals , Antibodies, Viral/blood , Fertility , Humans , Infertility, Male/virology , Male , Mice , Open Reading Frames
4.
J Med Virol ; 94(7): 3017-3031, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1756619

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19) has caused severe public health crises and heavy economic losses. Limited knowledge about this deadly virus impairs our capacity to set up a toolkit against it. Thus, more studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology are urgently needed. Reverse genetics systems, including viral infectious clones and replicons, are powerful platforms for viral research projects, spanning many aspects such as the rescues of wild-type or mutant viral particles, the investigation of viral replication mechanism, the characterization of viral protein functions, and the studies on viral pathogenesis and antiviral drug development. The operations on viral infectious clones are strictly limited in the Biosafety Level 3 (BSL3) facilities, which are insufficient, especially during the pandemic. In contrast, the operation on the noninfectious replicon can be performed in Biosafety Level 2 (BSL2) facilities, which are widely available. After the outbreak of COVID-19, many reverse genetics systems for SARS-CoV-2, including infectious clones and replicons are developed and given plenty of options for researchers to pick up according to the requirement of their research works. In this review, we summarize the available reverse genetics systems for SARS-CoV-2, by highlighting the features of these systems, and provide a quick guide for researchers, especially those without ample experience in operating viral reverse genetics systems.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Replicon , Reverse Genetics , SARS-CoV-2/genetics
5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313407

ABSTRACT

Analysis of viral protein-protein interactions is an essential step to uncover the viral protein functions and the molecular mechanism for the assembly of a viral protein complex. We employed a mammalian two-hybrid system to screen all the viral proteins of SARS-CoV-2 for the protein-protein interactions. Our study detected 48 interactions, 14 of which were firstly reported here. Unlike Nsp1 of SARS-CoV, Nsp1 of SARS-CoV-2 has the most interacting partners among all the viral proteins and likely functions as a hub for the viral proteins. Five self-interactions were confirmed, and five interactions, Nsp1/Nsp3.1, Nsp3.1/N, Nsp3.2/Nsp12, Nsp10/Nsp14, and Nsp10/Nsp16, were determined to be positive bidirectionally. Using the replicon reporter system of SARS-CoV-2, we screened all viral proteins for their impacts on the viral replication and revealed Nsp3.1, the N-terminus of Nsp3, significantly inhibited the replicon reporter gene expression. We found Nsp3 interacted with N through its acidic region at N-terminus, while N interacted with Nsp3 through its NTD, which is rich in the basic amino acids. Furthermore, using purified truncated N and Nsp3 proteins, we determined the direct interactions between Nsp3 and N protein. In summary, our findings provided a basis for understanding the functions of coronavirus proteins and supported the potential of interactions as the target for antiviral drug development.

6.
Redox Biol ; 48: 102199, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1537013

ABSTRACT

3CLpro is a key proteinase for SARS-CoV-2 replication and serves as an important target for antiviral drug development. However, how its activity is regulated intracellularly is still obscure. In this study, we developed a 3CLpro protease activity reporter system to examine the impact of various factors, including nutrient supplements, ions, pHs, or oxidative stress inducers, on 3CLpro protease activity. We found that oxidative stress could increase the overall activity of 3CLpro. Not altering the expression, oxidative stress decreased the solubility of 3CLpro in the lysis buffer containing 1% Triton-X-100. The Triton-X-100-insoluble 3CLpro was correlated with aggregates' formation and responsible for the increased enzymatic activity. The disulfide bonds formed between Cys85 sites of 3CLpro protomers account for the insolubility and the aggregation of 3CLpro. Besides being regulated by oxidative stress, 3CLpro impaired the cellular antioxidant capacity by regulating the cleavage of GPx1 at its N-terminus. This cleavage could further elevate the 3CLpro-proximate oxidative activity, favor aggregation and activation of 3CLpro, and thus lead to a positive feedback loop. In summary, we reported that oxidative stress transforms 3CLpro into a detergent-insoluble form that is more enzymatically active, leading to increased viral replication/transcription. Our study provided mechanistic evidence that suggests the therapeutic potential of antioxidants in the clinical treatment of COVID-19 patients.

7.
Cell Biosci ; 11(1): 140, 2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1526659

ABSTRACT

BACKGROUND: Analysis of viral protein-protein interactions is an essential step to uncover the viral protein functions and the molecular mechanism for the assembly of a viral protein complex. We employed a mammalian two-hybrid system to screen all the viral proteins of SARS-CoV-2 for the protein-protein interactions. RESULTS: Our study detected 48 interactions, 14 of which were firstly reported here. Unlike Nsp1 of SARS-CoV, Nsp1 of SARS-CoV-2 has the most interacting partners among all the viral proteins and likely functions as a hub for the viral proteins. Five self-interactions were confirmed, and five interactions, Nsp1/Nsp3.1, Nsp3.1/N, Nsp3.2/Nsp12, Nsp10/Nsp14, and Nsp10/Nsp16, were determined to be positive bidirectionally. Using the replicon reporter system of SARS-CoV-2, we screened all viral Nsps for their impacts on the viral replication and revealed Nsp3.1, the N-terminus of Nsp3, significantly inhibited the replicon reporter gene expression. We found Nsp3 interacted with N through its acidic region at N-terminus, while N interacted with Nsp3 through its NTD, which is rich in the basic amino acids. Furthermore, using purified truncated N and Nsp3 proteins, we determined the direct interactions between Nsp3 and N protein. CONCLUSIONS: Our findings provided a basis for understanding the functions of coronavirus proteins and supported the potential of interactions as the target for antiviral drug development.

8.
Chem Sci ; 12(42): 14098-14102, 2021 Nov 03.
Article in English | MEDLINE | ID: covidwho-1472230

ABSTRACT

The SARS-CoV-2 3-chymotrypsin-like protease (3CLpro or Mpro) is a key cysteine protease for viral replication and transcription, making it an attractive target for antiviral therapies to combat the COVID-19 disease. Here, we demonstrate that bismuth drug colloidal bismuth subcitrate (CBS) is a potent inhibitor for 3CLpro in vitro and in cellulo. Rather than targeting the cysteine residue at the catalytic site, CBS binds to an allosteric site and results in dissociation of the 3CLpro dimer and proteolytic dysfunction. Our work provides direct evidence that CBS is an allosteric inhibitor of SARS-CoV-2 3CLpro.

9.
Virol Sin ; 36(5): 913-923, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1230296

ABSTRACT

SARS-CoV-2 causes the pandemic of COVID-19 and no effective drugs for this disease are available thus far. Due to the high infectivity and pathogenicity of this virus, all studies on the live virus are strictly confined in the biosafety level 3 (BSL3) laboratory but this would hinder the basic research and antiviral drug development of SARS-CoV-2 because the BSL3 facility is not commonly available and the work in the containment is costly and laborious. In this study, we constructed a reverse genetics system of SARS-CoV-2 by assembling the viral cDNA in a bacterial artificial chromosome (BAC) vector with deletion of the spike (S) gene. Transfection of the cDNA into cells results in the production of an RNA replicon that keeps the capability of genome or subgenome replication but is deficient in virion assembly and infection due to the absence of S protein. Therefore, such a replicon system is not infectious and can be used in ordinary biological laboratories. We confirmed the efficient replication of the replicon by demonstrating the expression of the subgenomic RNAs which have similar profiles to the wild-type virus. By mutational analysis of nsp12 and nsp14, we showed that the RNA polymerase, exonuclease, and cap N7 methyltransferase play essential roles in genome replication and sgRNA production. We also created a SARS-CoV-2 replicon carrying a luciferase reporter gene and this system was validated by the inhibition assays with known anti-SARS-CoV-2 inhibitors. Thus, such a one-plasmid system is biosafe and convenient to use, which will benefit both fundamental research and development of antiviral drugs.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/pharmacology , Containment of Biohazards , Humans , Replicon , SARS-CoV-2 , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL