Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
IEEE International Instrumentation and Measurement Technology Conference (I2MTC) ; 2021.
Article in English | Web of Science | ID: covidwho-1978392

ABSTRACT

LED lighting is becoming increasingly pervasive in many areas ranging from ambient lighting, up to applications such as microscope illumination, UV-LED curing and, UV disinfection for air, surfaces, and water. Irradiance uniformity is often a fundamental parameter for guiding the design, comparison, and optimization of the illuminator. To this end, many methods and procedures have been proposed to guide the arrangement of the LED sources, as well as to guide the design of ad-hoc lenses. Nevertheless, there are many applications in which it is important to be able to consider other aspects as well as the uniformity of the irradiance. For this purpose, we propose both a method that allows calculating the irradiance generated by the used LED sources and, performance indicators for guiding the design and comparing different optical layouts.

2.
IEEE Sensors Journal ; 2021.
Article in English | Scopus | ID: covidwho-1566246

ABSTRACT

Early diagnosis of pulmonary implications is fundamental for the treatment of several diseases, such as idiopathic pulmonary fibrosis, rheumatoid arthritis, connective tissue diseases and interstitial pneumonia secondary to COVID-19 among the many. Recent studies prove that a wide class of pulmonary diseases can be early detected by auscultation and suitably developed algorithms for the analysis of lung sounds. Indeed, the technical characteristics of sensors have an impact on the quality of the acquired lung sounds. The availability of a fair and quantitative approach to sensors’comparison is a prerequisite for the development of new diagnostic tools. In this work the problem of a fair comparison between sensors for lung sounds is decoupled into two steps. The first part of this study is devoted to the identification of a synthetic material capable of mimicking the acoustic behavior of human soft tissues;this material is then adopted as a reference. In the second part, the standard skin is exploited to quantitatively compare several types of sensors in terms of noise floor and sensitivity. The proposed methodology leads to reproducible results and allows to consider sensors of different nature, e.g. laryngophone, electret microphone, digital MEMS microphone, mechanical phonendoscope and electronic phonendoscope. Finally, the experimental results are interpreted under the new perspective of equivalent sensitivity and some important guidelines for the design of new sensors are provided. These guidelines could represent the starting point for improving the devices for acquisition of lung sounds. IEEE

SELECTION OF CITATIONS
SEARCH DETAIL