Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Lung India ; 39(3): 247-253, 2022.
Article in English | MEDLINE | ID: covidwho-1810866

ABSTRACT

Background: Hypoxia in patients with COVID-19 is one of the strongest predictors of mortality. Silent hypoxia is characterised by the presence of hypoxia without dyspnoea. Silent hypoxia has been shown to affect the outcome in previous studies. Methods: This was a retrospective study of a cohort of patients with SARS-CoV-2 infection who were hypoxic at presentation. Clinical, laboratory and treatment parameters in patients with silent hypoxia and dyspnoeic hypoxia were compared. Multivariate logistic regression models were fitted to identify the factors predicting mortality. Results: Among 2080 patients with COVID-19 admitted to our hospital, 811 patients were hypoxic with SpO2 <94% at the time of presentation. Among them, 174 (21.45%) did not have dyspnoea since the onset of COVID-19 symptoms. Further, 5.2% of patients were completely asymptomatic for COVID-19 and were found to be hypoxic only on pulse oximetry. The case fatality rate in patients with silent hypoxia was 45.4% as compared to 40.03% in dyspnoeic hypoxic patients (P = 0.202). The odds ratio of death was 1.1 (95% CI: 0.41-2.97) in the patients with silent hypoxia after adjusting for baseline characteristics, laboratory parameters, treatment and in-hospital complications, which did not reach statistical significance (P = 0.851). Conclusion: Silent hypoxia may be the only presenting feature of COVID-19. As the case fatality rate is comparable between silent and dyspnoeic hypoxia, it should be recognised early and treated as aggressively. Because home isolation is recommended in patients with COVID-19, it is essential to use pulse oximetry in the home setting to identify these patients.

2.
Advanced Healthcare Materials ; 11(3):2270017, 2022.
Article in English | Wiley | ID: covidwho-1664337

ABSTRACT

Sars-CoV-2 Vaccines In article number 2102089 by Bernd H. A. Rehm and co-workers, an ambient temperature-stable, scalable COVID-19 polymer particle vaccines are developed by engineering endotoxinfree bacterial cell factories to self-assemble biopolymer particles coated with immunogenic SARS-CoV-2 antigens. Polymer particle vaccines induce protective immunity in a hamster SARS-CoV-2 infection model reducing virus titers up to viral clearance in lungs post infection.

3.
Lung India ; 39(1): 16-26, 2022.
Article in English | MEDLINE | ID: covidwho-1604705

ABSTRACT

BACKGROUND: The "second wave" of the COVID-19 pandemic hit India from early April 2021 to June 2021. We describe the clinical features, treatment trends, and baseline laboratory parameters of a cohort of patients with SARS-CoV-2 infection and their association with the outcome. METHODS: This was a retrospective cohort study. Multivariate logistic regression models were fitted to identify clinical and biochemical predictors of developing hypoxia, deterioration during the hospital stay, and death. RESULTS: A total of 2080 patients were included. The case fatality rate was 19.5%. Among the survivors, the median duration of hospital stay was 8 (5-11) days. Out of 853 (42.3%%) of patients who had COVID-19 acute respiratory distress syndrome at presentation, 340 (39.9%) died. Patients aged >45 years had higher odds of death as compared to the 18-44 years age group. Vaccination reduced the odds of death by 40% (odds ratio [OR] [95% confidence interval [CI]]: 0.6 [0.4-0.9], P = 0.032). Patients with hyper inflammation at baseline as suggested by leukocytosis (OR [95% CI]: 2.1 [1.5-3.1], P < 0.001), raised d-dimer >500 mg/dL (OR [95% CI]: 3.2 [2.2-4.7], P < 0.001), and raised C-reactive peptide >0.5 mg/L (OR [95% CI]: 3.7 [2.2-13], P = 0.037) had higher odds of death. Patients who were admitted in the 2nd week had lower odds and those admitted in the 3rd week had higher odds of death. CONCLUSION: This study shows that vaccination status and early admission during the inflammatory phase can change the course of illness of these patients. Improving vaccination rates and early admission of patients with moderate and severe COVID-19 can improve the outcomes.

4.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295883

ABSTRACT

Background Due to the unprecedented speed of SARS-CoV-2 vaccine development, their efficacy trials and issuance of emergency use approvals and marketing authorizations, additional scientific questions remain that need to be answered regarding vaccine effectiveness, vaccination regimens and the need for booster doses. While long-term studies on the correlates of protection, vaccine effectiveness, and enhanced surveillance are awaited, studies on breakthrough infections help us understand the nature and course of this illness among vaccinated individuals and guide in public health preparedness. Methods This observational cohort study aimed at comparing the differences in clinical, biochemical parameters and the hospitalization outcomes of 53 fully vaccinated individuals with those of unvaccinated (1,464) and partially vaccinated (231) individuals, among a cohort of 2,080 individuals hospitalized with SARS-CoV-2 infection. Results Completing the course of vaccination protected individuals from developing severe COVID-19 as evidence by lower proportions of those with hypoxia, abnormal levels of inflammatory markers, requiring ventilatory support and death compared to unvaccinated and partially vaccinated individuals. There were no differences in these outcomes among patients who received either vaccine type approved in India. Conclusion With a current rate of only 9.5% of the Indian population being fully vaccinated, efforts should be made to improve the vaccination rates as a timely measure to prepare for the upcoming waves of this highly transmissible pandemic. Vaccination rates of the communities may also guide in the planning of the health needs and appropriate use of medical resources. Research in context Evidence before this study The Government of India started vaccinating its citizens from the 16 th of January 2021, after emergency use authorization had been received for the use of two vaccines, BBV152, a COVID-19 vaccine based on the whole-virion SARS-CoV-2 vaccine strain NIV-2020-770, (Covaxin) and the recombinant replication-deficient chimpanzee adenovirus vector encoding the spike protein ChAdOx1 nCoV-19 Corona Virus Vaccine (Covishield). These have been approved by the Indian regulatory authority based on randomized controlled studies. In these studies, was found that the vaccines led to more than 90% reduction in symptomatic COVID-19 disease. However, there is scarce evidence of the efficacy of these vaccines in real-world scenarios. A few studies have looked at vaccinated cohorts such as health care workers in whom the vaccines had an efficacy similar to the RCTs. In a study of patients with SARS-CoV-2 infection admitted to a tertiary care hospital in New Delhi, it was found that mortality in fully vaccinated patients was 12.5% as compared to 31.5% in the unvaccinated cohort. Added-value of this study This cohort of hospitalized patients with SARS-CoV-2 infection was studied during the peak of the second wave of COVID-19 in India during which the delta variant of concern was the predominant infecting strain and had 26% patients who were partially vaccinated and 71.4% who were unvaccinated. Only 3% of the patients were fully vaccinated and developed a breakthrough infection. At the time of presentation, 13% of the individuals with breakthrough infection and 48·5% in the non-vaccinated group were hypoxic. Inflammatory markers were significantly lower in the completely vaccinated patients with breakthrough infection. The need for use of steroids and anti-viral agents such as remdesivir was also significantly low in the breakthrough infection group. A significantly less proportion of the individuals with breakthrough infection required oxygen supplementation or ventilatory support. Very few deteriorated or progressed to critical illness during their hospital stay. Only 3 individuals (5.7%) out of the 53 who developed breakthrough infection succumbed to illness while case fatality rates were significantly higher in the unvaccinated (22.8%) and pa tially vaccinated (19.5%) groups. Propensity score weighted multivariate logistic regression analysis revealed lower odds of developing hypoxia, critical illness or death in those who were completely vaccinated. Implications of all the available evidence The real-world effectiveness of the vaccines against SARS-CoV-2 seems to be similar to the randomized controlled trials. The vaccines are very effective in reducing the incidence of severe COVID-19, hypoxia, critical illness and death. The reduced need for oxygen supplementation, mechanical ventilation and the requirement of corticosteroids or other expensive medications such as anti-viral drugs could go a long way in redistributing scarce health care resources. All nations must move forward and vaccinate the citizens, as the current evidence suggests that ‘prevention is better than cure’.

5.
Adv Healthc Mater ; 11(3): e2102089, 2022 02.
Article in English | MEDLINE | ID: covidwho-1487433

ABSTRACT

There is an unmet need for safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are stable and can be cost-effectively produced at large scale. Here, a biopolymer particle (BP) vaccine technology that can be quickly adapted to new and emerging variants of SARS-CoV-2 is used. Coronavirus antigen-coated BPs are described as vaccines against SARS-CoV-2. The spike protein subunit S1 or epitopes from S and M proteins (SM) plus/minus the nucleocapsid protein (N) are selected as antigens to either coat BPs during assembly inside engineered Escherichia coli or BPs are engineered to specifically ligate glycosylated spike protein (S1-ICC) produced by using baculovirus expression in insect cell culture (ICC). BP vaccines are safe and immunogenic in mice. BP vaccines, SM-BP-N and S1-ICC-BP induced protective immunity in the hamster SARS-CoV-2 infection model as shown by reduction of virus titers up to viral clearance in lungs post infection. The BP platform offers the possibility for rapid design and cost-effective large-scale manufacture of ambient temperature stable and globally available vaccines to combat the coronavirus disease 2019 (COVID-19) pandemic.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Viral , Cricetinae , Humans , Mice , Polymers , SARS-CoV-2 , Temperature
6.
Clin Transl Immunology ; 10(3): e1260, 2021.
Article in English | MEDLINE | ID: covidwho-1120050

ABSTRACT

OBJECTIVES: A major COVID-19 vaccine strategy is to induce antibodies that prevent interaction between the Spike protein's receptor-binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2). These vaccines will also induce T-cell responses. However, concerns were raised that aberrant vaccine-induced immune responses may exacerbate disease. We aimed to identify minimal epitopes on the RBD that would induce antibody responses that block the interaction of the RBD and ACE2 as a strategy leading to an effective vaccine with reduced risk of inducing immunopathology. METHODS: We procured a series of overlapping 20-amino acid peptides spanning the RBD and asked which were recognised by plasma from COVID-19 convalescent patients. Identified epitopes were conjugated to diphtheria-toxoid and used to vaccinate mice. Immune sera were tested for binding to the RBD and for their ability to block the interaction of the RBD and ACE2. RESULTS: Seven putative vaccine epitopes were identified. Memory B-cells (MBCs) specific for one of the epitopes were identified in the blood of convalescent patients. When used to vaccinate mice, six induced antibodies that bound recRBD and three induced antibodies that could partially block the interaction of the RBD and ACE2. However, when the sera were combined in pairs, we observed significantly enhanced inhibition of binding of RBD to ACE2. Two of the peptides were located in the main regions of the RBD known to contact ACE2. Of significant importance to vaccine development, two of the peptides were in regions that are invariant in the UK and South African strains. CONCLUSION: COVID-19 convalescent patients have SARS-CoV-2-specific antibodies and MBCs, the specificities of which can be defined with short peptides. Epitope-specific antibodies synergistically block RBD-ACE2 interaction.

SELECTION OF CITATIONS
SEARCH DETAIL