Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Commun ; 13(1): 383, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1636827

ABSTRACT

A single center open label phase 2 randomised control trial (Clinical Trial Registry of India No. CTRI/2020/05/025209) was done to assess clinical and immunological benefits of passive immunization using convalescent plasma therapy. At the Infectious Diseases and Beleghata General Hospital in Kolkata, India, 80 patients hospitalized with severe COVID-19 disease and fulfilling the inclusion criteria (aged more than 18 years, with either mild ARDS having PaO2/FiO2 200-300 or moderate ARDS having PaO2/FiO2 100-200, not on mechanical ventilation) were recruited and randomized into either standard of care (SOC) arm (N = 40) or the convalescent plasma therapy (CPT) arm (N = 40). Primary outcomes were all-cause mortality by day 30 of enrolment and immunological correlates of response to therapy if any, for which plasma abundance of a large panel of cytokines was quantitated before and after intervention to assess the effect of CPT on the systemic hyper-inflammation encountered in these patients. The secondary outcomes were recovery from ARDS and time taken to negative viral RNA PCR as well as to report any adverse reaction to plasma therapy. Transfused convalescent plasma was characterized in terms of its neutralizing antibody content as well as proteome. The trial was completed and it was found that primary outcome of all-cause mortality was not significantly different among severe COVID-19 patients with ARDS randomized to two treatment arms (Mantel-Haenszel Hazard Ratio 0.6731, 95% confidence interval 0.3010-1.505, with a P value of 0.3424 on Mantel-Cox Log-rank test). No adverse effect was reported with CPT. In severe COVID-19 patients with mild or moderate ARDS no significant clinical benefit was registered in this clinical trial with convalescent plasma therapy in terms of prespecified outcomes.

2.
Front Cell Infect Microbiol ; 11: 783961, 2021.
Article in English | MEDLINE | ID: covidwho-1630423

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic has demonstrated the range of disease severity and pathogen genomic diversity emanating from a singular virus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). This diversity in disease manifestations and genomic mutations has challenged healthcare management and resource allocation during the pandemic, especially for countries such as India with a bigger population base. Here, we undertake a combinatorial approach toward scrutinizing the diagnostic and genomic diversity to extract meaningful information from the chaos of COVID-19 in the Indian context. Using methods of statistical correlation, machine learning (ML), and genomic sequencing on a clinically comprehensive patient dataset with corresponding with/without respiratory support samples, we highlight specific significant diagnostic parameters and ML models for assessing the risk of developing severe COVID-19. This information is further contextualized in the backdrop of SARS-CoV-2 genomic features in the cohort for pathogen genomic evolution monitoring. Analysis of the patient demographic features and symptoms revealed that age, breathlessness, and cough were significantly associated with severe disease; at the same time, we found no severe patient reporting absence of physical symptoms. Observing the trends in biochemical/biophysical diagnostic parameters, we noted that the respiratory rate, total leukocyte count (TLC), blood urea levels, and C-reactive protein (CRP) levels were directly correlated with the probability of developing severe disease. Out of five different ML algorithms tested to predict patient severity, the multi-layer perceptron-based model performed the best, with a receiver operating characteristic (ROC) score of 0.96 and an F1 score of 0.791. The SARS-CoV-2 genomic analysis highlighted a set of mutations with global frequency flips and future inculcation into variants of concern (VOCs) and variants of interest (VOIs), which can be further monitored and annotated for functional significance. In summary, our findings highlight the importance of SARS-CoV-2 genomic surveillance and statistical analysis of clinical data to develop a risk assessment ML model.

3.
Front Genet ; 12: 753648, 2021.
Article in English | MEDLINE | ID: covidwho-1605591

ABSTRACT

Globally, SARS-CoV-2 has moved from one tide to another with ebbs in between. Genomic surveillance has greatly aided the detection and tracking of the virus and the identification of the variants of concern (VOC). The knowledge and understanding from genomic surveillance is important for a populous country like India for public health and healthcare officials for advance planning. An integrative analysis of the publicly available datasets in GISAID from India reveals the differential distribution of clades, lineages, gender, and age over a year (Apr 2020-Mar 2021). The significant insights include the early evidence towards B.1.617 and B.1.1.7 lineages in the specific states of India. Pan-India longitudinal data highlighted that B.1.36* was the predominant clade in India until January-February 2021 after which it has gradually been replaced by the B.1.617.1 lineage, from December 2020 onward. Regional analysis of the spread of SARS-CoV-2 indicated that B.1.617.3 was first seen in India in the month of October in the state of Maharashtra, while the now most prevalent strain B.1.617.2 was first seen in Bihar and subsequently spread to the states of Maharashtra, Gujarat, and West Bengal. To enable a real time understanding of the transmission and evolution of the SARS-CoV-2 genomes, we built a transmission map available on https://covid19-indiana.soic.iupui.edu/India/EmergingLineages/April2020/to/March2021. Based on our analysis, the rate estimate for divergence in our dataset was 9.48 e-4 substitutions per site/year for SARS-CoV-2. This would enable pandemic preparedness with the addition of future sequencing data from India available in the public repositories for tracking and monitoring the VOCs and variants of interest (VOI). This would help aid decision making from the public health perspective.

4.
Front Immunol ; 12: 765211, 2021.
Article in English | MEDLINE | ID: covidwho-1581337

ABSTRACT

Saturation suppressor mutagenesis was used to generate thermostable mutants of the SARS-CoV-2 spike receptor-binding domain (RBD). A triple mutant with an increase in thermal melting temperature of ~7°C with respect to the wild-type B.1 RBD and was expressed in high yield in both mammalian cells and the microbial host, Pichia pastoris, was downselected for immunogenicity studies. An additional derivative with three additional mutations from the B.1.351 (beta) isolate was also introduced into this background. Lyophilized proteins were resistant to high-temperature exposure and could be stored for over a month at 37°C. In mice and hamsters, squalene-in-water emulsion (SWE) adjuvanted formulations of the B.1-stabilized RBD were considerably more immunogenic than RBD lacking the stabilizing mutations and elicited antibodies that neutralized all four current variants of concern with similar neutralization titers. However, sera from mice immunized with the stabilized B.1.351 derivative showed significantly decreased neutralization titers exclusively against the B.1.617.2 (delta) VOC. A cocktail comprising stabilized B.1 and B.1.351 RBDs elicited antibodies with qualitatively improved neutralization titers and breadth relative to those immunized solely with either immunogen. Immunized hamsters were protected from high-dose viral challenge. Such vaccine formulations can be rapidly and cheaply produced, lack extraneous tags or additional components, and can be stored at room temperature. They are a useful modality to combat COVID-19, especially in remote and low-resource settings.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/immunology , Cricetinae , Immunogenicity, Vaccine/immunology , Mice , Spike Glycoprotein, Coronavirus/genetics
5.
Vaccines (Basel) ; 10(1)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1580341

ABSTRACT

This study elucidated the clinical, humoral immune response and genomic analysis of vaccine breakthrough (VBT) infections after ChAdOx1 nCoV-19/Covishield vaccine in healthcare workers (HCWs). Amongst 1858 HCWs, 1639 had received either two doses (1346) or a single dose (293) of ChAdOx1 nCoV-19 vaccine. SARS-CoV-2 IgG antibodies and neutralizing antibodies were measured in the vaccinated group and the development of SARS-CoV-2 infection was monitored.Forty-six RT-PCR positive samples from the 203 positive samples were subjected to whole genome sequencing (WGS). Of the 203 (10.92%) infected HCWs, 21.46% (47/219) were non-vaccinated, which was significantly more than 9.52% (156/1639) who were vaccinated and infection was higher in doctors and nurses. Unvaccinated HCWs had 1.57 times higher risk compared to partially vaccinated HCWs and 2.49 times higher risk than those who were fully vaccinated.The partially vaccinated were at higher risk than the fully vaccinated (RR 1.58). Antibody non-response was seen in 3.44% (4/116), low antibody levels in 15.51% (18/116) and medium levels were found in 81.03% (94/116). Fully vaccinated HCWs had a higher antibody response at day 42 than those who were partially vaccinated (8.96 + 4.00 vs. 7.17 + 3.82). Whole genome sequencing of 46 samples revealed that the Delta variant (B.1.617.2) was predominant (69.5%). HCWs who had received two doses of vaccine showed better protection from mild, moderate, or severe infection, with a higher humoral immune response than those who had received a single dose. The genomic analysis revealed the predominance of the Delta variant (B.1.617.2) in the VBT infections.

6.
J Clin Virol ; 146: 105060, 2022 01.
Article in English | MEDLINE | ID: covidwho-1587311

ABSTRACT

Over 90% of the COVID-19 patients manifest mild/moderate symptoms or are asymptomatic. Although comorbidities and dysregulation of immune response have been implicated in severe COVID-19, the host factors that associate with asymptomatic or mild infections have not been characterized. We have collected serial samples from 23 hospitalized COVID-19 patients with mild symptoms and measured the kinetics of SARS-CoV-2 viral load in respiratory samples and markers of inflammation in serum samples. We monitored seroconversion during the acute phase of illness and quantitated the amount of total IgG against the receptor-binding domain of SARS-CoV-2 and estimated the virus neutralization potential of these antibodies. Viral load decreased by day 8 in all the patients but the detection of viral RNA in saliva samples did not correlate well with viral RNA detection in nasopharyngeal/oropharyngeal swab samples. 25% of the virus-positive patients had no detectable neutralizing antibodies in the serum and in other cases, the efficiency of antibodies to neutralize SARS-CoV-2 B1.1.7 strain was lower as compared to the circulating virus isolate. Decrease in viral load coincided with increase in neutralizing antibodies and interferon levels in serum. Most patients showed no increase in inflammatory cytokines such as IL-1ß or IL-6, however, elevated levels of IL-7 and other inflammatory mediators such as TNF-α and IL-8 was observed. These data suggest that most mild infections are associated with absence of inflammation coupled with an active innate immune response, T-cell activation and neutralizing antibodies.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity , SARS-CoV-2 , Viral Load
7.
Preprint in English | Other preprints | ID: ppcovidwho-295504

ABSTRACT

The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha). In vitro , B.1.617.2 is 6-fold less sensitive to serum neutralising antibodies from recovered individuals, and 8-fold less sensitive to vaccine-elicited antibodies as compared to wild type Wuhan-1 bearing D614G. Serum neutralising titres against B.1.617.2 were lower in ChAdOx-1 versus BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies against the receptor binding domain (RBD) and N-terminal domain (NTD), in particular to the clinically approved bamlavinimab and imdevimab monoclonal antibodies. B.1.617.2 demonstrated higher replication efficiency in both airway organoid and human airway epithelial systems as compared to B.1.1.7, associated with B.1.617.2 spike being in a predominantly cleaved state compared to B.1.1.7. Additionally we observed that B.1.617.2 had higher replication and spike mediated entry as compared to B.1.617.1, potentially explaining B.1.617.2 dominance. In an analysis of over 130 SARS-CoV-2 infected healthcare workers across three centres in India during a period of mixed lineage circulation, we observed substantially reduced ChAdOx-1 vaccine efficacy against B.1.617.2 relative to non-B.1.617.2. Compromised vaccine efficacy against the highly fit and immune evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.

8.
Lancet Infect Dis ; 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1537190

ABSTRACT

BACKGROUND: SARS-CoV-2 variants of concern (VOCs) have threatened COVID-19 vaccine effectiveness. We aimed to assess the effectiveness of the ChAdOx1 nCoV-19 vaccine, predominantly against the delta (B.1.617.2) variant, in addition to the cellular immune response to vaccination. METHODS: We did a test-negative, case-control study at two medical research centres in Faridabad, India. All individuals who had a positive RT-PCR test for SARS-CoV-2 infection between April 1, 2021, and May 31, 2021, were included as cases and individuals who had a negative RT-PCR test were included as controls after matching with cases on calendar week of RT-PCR test. The primary outcome was effectiveness of complete vaccination with the ChAdOx1 nCoV-19 vaccine against laboratory-confirmed SARS-CoV-2 infection. The secondary outcomes were effectiveness of a single dose against SARS-CoV-2 infection and effectiveness of a single dose and complete vaccination against moderate-to-severe disease among infected individuals. Additionally, we tested in-vitro live-virus neutralisation and T-cell immune responses to the spike protein of the wild-type SARS-CoV-2 and VOCs among healthy (anti-nucleocapsid antibody negative) recipients of the ChAdOx1 nCoV-19 vaccine. FINDINGS: Of 2379 cases of confirmed SARS-CoV-2 infection, 85 (3·6%) were fully vaccinated compared with 168 (8·5%) of 1981 controls (adjusted OR [aOR] 0·37 [95% CI 0·28-0·48]), giving a vaccine effectiveness against SARS-CoV-2 infection of 63·1% (95% CI 51·5-72·1). 157 (6·4%) of 2451 of cases and 181 (9·1%) of 1994) controls had received a single dose of the ChAdOx1 nCoV-19 vaccine (aOR 0·54 [95% CI 0·42-0·68]), thus vaccine effectiveness of a single dose against SARS-CoV-2 infection was 46·2% (95% CI 31·6-57·7). One of 84 cases with moderate-to-severe COVID-19 was fully vaccinated compared with 84 of 2295 cases with mild COVID-19 (aOR 0·19 [95% CI 0·01-0·90]), giving a vaccine effectiveness of complete vaccination against moderate-to-severe disease of 81·5% (95% CI 9·9-99·0). The effectiveness of a single dose against moderate-to-severe disease was 79·2% (95% CI 46·1-94·0); four of 87 individuals with moderate-to-severe COVID-19 had received a single dose compared with 153 of 2364 participants with mild disease (aOR 0·20 [95% CI 0·06-0·54]). Among 49 healthy, fully vaccinated individuals, neutralising antibody responses were lower against the alpha (B.1.1.7; geometric mean titre 244·7 [95% CI 151·8-394·4]), beta (B.1.351; 97·6 [61·2-155·8]), kappa (B.1.617.1; 112·8 [72·7-175·0]), and delta (88·4 [61·2-127·8]) variants than against wild-type SARS-CoV-2 (599·4 [376·9-953·2]). However, the antigen-specific CD4 and CD8 T-cell responses were conserved against both the delta variant and wild-type SARS-CoV-2. INTERPRETATION: The ChAdOx1 nCoV-19 vaccine remained effective against moderate-to-severe COVID-19, even during a surge that was dominated by the highly transmissible delta variant of SARS-CoV-2. Spike-specific T-cell responses were maintained against the delta variant. Such cellular immune protection might compensate for waning humoral immunity. FUNDING: Department of Biotechnology India, Council of Scientific and Industrial Research India, and Fondation Botnar.

10.
Front Immunol ; 12: 738093, 2021.
Article in English | MEDLINE | ID: covidwho-1518484

ABSTRACT

Disease caused by SARS-CoV-2 coronavirus (COVID-19) led to significant morbidity and mortality worldwide. A systemic hyper-inflammation characterizes severe COVID-19 disease, often associated with acute respiratory distress syndrome (ARDS). Blood biomarkers capable of risk stratification are of great importance in effective triage and critical care of severe COVID-19 patients. Flow cytometry and next-generation sequencing were done on peripheral blood cells and urokinase-type plasminogen activator receptor (suPAR), and cytokines were measured from and mass spectrometry-based proteomics was done on plasma samples from an Indian cohort of COVID-19 patients. Publicly available single-cell RNA sequencing data were analyzed for validation of primary data. Statistical analyses were performed to validate risk stratification. We report here higher plasma abundance of suPAR, expressed by an abnormally expanded myeloid cell population, in severe COVID-19 patients with ARDS. The plasma suPAR level was found to be linked to a characteristic plasma proteome, associated with coagulation disorders and complement activation. Receiver operator characteristic curve analysis to predict mortality identified a cutoff value of suPAR at 1,996.809 pg/ml (odds ratio: 2.9286, 95% confidence interval 1.0427-8.2257). Lower-than-cutoff suPAR levels were associated with a differential expression of the immune transcriptome as well as favorable clinical outcomes, in terms of both survival benefit (hazard ratio: 0.3615, 95% confidence interval 0.1433-0.912) and faster disease remission in our patient cohort. Thus, we identified suPAR as a key pathogenic circulating molecule linking systemic hyperinflammation to the hypercoagulable state and stratifying clinical outcomes in severe COVID-19 patients with ARDS.


Subject(s)
COVID-19/blood , Receptors, Urokinase Plasminogen Activator/blood , SARS-CoV-2 , Adult , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/immunology , Blood Proteins/analysis , COVID-19/immunology , Cytokines/blood , Humans , Inflammation/blood , Inflammation/immunology , Middle Aged , Myeloid Cells/immunology , Proteome/analysis , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Severity of Illness Index , Young Adult
11.
Pathogens ; 10(11)2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1512532

ABSTRACT

Since the time when detection of gene expression in single cells by microarrays to the Next Generation Sequencing (NGS) enabled Single Cell Genomics (SCG), it has played a pivotal role to understand and elucidate the functional role of cellular heterogeneity. Along this journey to becoming a key player in the capture of the individuality of cells, SCG overcame many milestones, including scale, speed, sensitivity and sample costs (4S). There have been many important experimental and computational innovations in the efficient analysis and interpretation of SCG data. The increasing role of AI in SCG data analysis has further enhanced its applicability in building models for clinical intervention. Furthermore, SCG has been instrumental in the delineation of the role of cellular heterogeneity in specific diseases, including cancer and infectious diseases. The understanding of the role of differential immune responses in driving coronavirus disease-2019 (COVID-19) disease severity and clinical outcomes has been greatly aided by SCG. With many variants of concern (VOC) in sight, it would be of great importance to further understand the immune response specificity vis-a-vis the immune cell repertoire, the identification of novel cell types, and antibody response. Given the potential of SCG to play an integral part in the multi-omics approach to the study of the host-pathogen interaction and its outcomes, our review attempts to highlight its strengths, its implications for infectious disease biology, and its current limitations. We conclude that the application of SCG would be a critical step towards future pandemic preparedness.

12.
Front Med (Lausanne) ; 8: 737007, 2021.
Article in English | MEDLINE | ID: covidwho-1399153

ABSTRACT

Background: Post infection immunity and post vaccination immunity both confer protection against COVID-19. However, there have been many whole genome sequencing proven reinfections and breakthrough infections. Both are most often mild and caused by Variants of Concern (VOC). Methods: The patient in our study underwent serial COVID-19 RT-PCR, blood tests for serology, acute phase reactants, and chest imaging as part of clinical care. We interviewed the patient for clinical history and retrieved reports and case papers. We retrieved stored RT-PCR positive samples for whole genome sequencing (WGS) of SARS-CoV-2 from the patient's breakthrough infections and the presumed index case. Findings: The patient had three RT-PCR confirmed SARS-CoV-2 infections. Two breakthrough infections occurred in quick succession with the first over 3 weeks after complete vaccination with COVISHIELD and despite post-vaccination seroconversion. The first breakthrough infection was due to the Alpha variant and the second due to the Delta variant. The Delta variant infection resulted in hypoxia, hospitalization, and illness lasting seven weeks. Serial serology, acute phase reactants, and chest imaging supported WGS in establishing distinct episodes of infection. WGS established a fully vaccinated family member as the index case. Interpretation: The patient had an Alpha variant breakthrough infection despite past infection, complete vaccination, and seroconversion. Despite boosting after this infection, the patient subsequently had a severe Delta variant breakthrough infection. This was also a WGS proven reinfection and, therefore, a case of breakthrough reinfection. The patient acquired the infection from a fully vaccinated family member.

13.
Nature ; 599(7883): 114-119, 2021 11.
Article in English | MEDLINE | ID: covidwho-1392870

ABSTRACT

The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.


Subject(s)
Immune Evasion , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Virus Replication/immunology , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , Cell Fusion , Cell Line , Female , Health Personnel , Humans , India , Kinetics , Male , Spike Glycoprotein, Coronavirus/metabolism , Vaccination
14.
Pathogens ; 10(9)2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1390714

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests a broad spectrum of clinical presentations, varying in severity from asymptomatic to mortality. As the viral infection spread, it evolved and developed into many variants of concern. Understanding the impact of mutations in the SARS-CoV-2 genome on the clinical phenotype and associated co-morbidities is important for treatment and preventionas the pandemic progresses. Based on the mild, moderate, and severe clinical phenotypes, we analyzed the possible association between both, the clinical sub-phenotypes and genomic mutations with respect to the severity and outcome of the patients. We found a significant association between the requirement of respiratory support and co-morbidities. We also identified six SARS-CoV-2 genome mutations that were significantly correlated with severity and mortality in our cohort. We examined structural alterations at the RNA and protein levels as a result of three of these mutations: A26194T, T28854T, and C25611A, present in the Orf3a and N protein. The RNA secondary structure change due to the above mutations can be one of the modulators of the disease outcome. Our findings highlight the importance of integrative analysis in which clinical and genetic components of the disease are co-analyzed. In combination with genomic surveillance, the clinical outcome-associated mutations could help identify individuals for priority medical support.

15.
Front Microbiol ; 12: 653399, 2021.
Article in English | MEDLINE | ID: covidwho-1389208

ABSTRACT

Co-infection with ancillary pathogens is a significant modulator of morbidity and mortality in infectious diseases. There have been limited reports of co-infections accompanying SARS-CoV-2 infections, albeit lacking India specific study. The present study has made an effort toward elucidating the prevalence, diversity and characterization of co-infecting respiratory pathogens in the nasopharyngeal tract of SARS-CoV-2 positive patients. Two complementary metagenomics based sequencing approaches, Respiratory Virus Oligo Panel (RVOP) and Holo-seq, were utilized for unbiased detection of co-infecting viruses and bacteria. The limited SARS-CoV-2 clade diversity along with differential clinical phenotype seems to be partially explained by the observed spectrum of co-infections. We found a total of 43 bacteria and 29 viruses amongst the patients, with 18 viruses commonly captured by both the approaches. In addition to SARS-CoV-2, Human Mastadenovirus, known to cause respiratory distress, was present in a majority of the samples. We also found significant differences of bacterial reads based on clinical phenotype. Of all the bacterial species identified, ∼60% have been known to be involved in respiratory distress. Among the co-pathogens present in our sample cohort, anaerobic bacteria accounted for a preponderance of bacterial diversity with possible role in respiratory distress. Clostridium botulinum, Bacillus cereus and Halomonas sp. are anaerobes found abundantly across the samples. Our findings highlight the significance of metagenomics based diagnosis and detection of SARS-CoV-2 and other respiratory co-infections in the current pandemic to enable efficient treatment administration and better clinical management. To our knowledge this is the first study from India with a focus on the role of co-infections in SARS-CoV-2 clinical sub-phenotype.

16.
Front Med (Lausanne) ; 8: 631769, 2021.
Article in English | MEDLINE | ID: covidwho-1389197

ABSTRACT

Background: SARS-CoV-2 infection may not provide long lasting post-infection immunity. While hundreds of reinfections have reported only a few have been confirmed. Whole genome sequencing (WGS) of the viral isolates from the different episodes is mandatory to establish reinfection. Methods: Nasopharyngeal (NP), oropharyngeal (OP) and whole blood (WB) samples were collected from paired samples of four individuals who were suspected of SARS-CoV-2 reinfection based on distinct clinical episodes and RT-PCR tests. Details from their case record files and investigations were documented. RNA was extracted from the NP and OP samples and subjected to WGS, and the nucleotide and amino acid sequences were subjected to genome and protein-based functional annotation analyses. Serial serology was performed for Anti-N IgG, Anti- S1 RBD IgG, and sVNT (surrogate virus neutralizing test). Findings: Three patients were more symptomatic with lower Ct values and longer duration of illness. Seroconversion was detected soon after the second episode in three patients. WGS generated a genome coverage ranging from 80.07 to 99.7%. Phylogenetic analysis revealed sequences belonged to G, GR and "Other" clades. A total of 42mutations were identified in all the samples, consisting of 22 non-synonymous, 17 synonymous, two in upstream, and one in downstream regions of the SARS-CoV-2 genome. Comparative genomic and protein-based annotation analyses revealed differences in the presence and absence of specific mutations in the virus sequences from the two episodes in all four paired samples. Interpretation: Based on the criteria of genome variations identified by whole genome sequencing and supported by clinical presentation, molecular and serological tests, we were able to confirm reinfections in two patients, provide weak evidence of reinfection in the third patient and unable to rule out a prolonged infection in the fourth. This study emphasizes the importance of detailed analyses of clinical and serological information as well as the virus's genomic variations while assessing cases of SARS-CoV-2 reinfection.

17.
Brief Funct Genomics ; 2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1360335

ABSTRACT

Infectious diseases are potential drivers for human evolution, through a complex, continuous and dynamic interaction between the host and the pathogen/s. It is this dynamic interaction that contributes toward the clinical outcome of a pathogenic disease. These are modulated by contributions from the human genetic variants, transcriptional response (including noncoding RNA) and the pathogen's genome architecture. Modern genomic tools and techniques have been crucial for the detection and genomic characterization of pathogens with respect to the emerging infectious diseases. Aided by next-generation sequencing (NGS), risk stratification of host population/s allows for the identification of susceptible subgroups and better disease management. Nevertheless, many challenges to a general understanding of host-pathogen interactions remain. In this review, we elucidate how a better understanding of the human host-pathogen interplay can substantially enhance, and in turn benefit from, current and future applications of multi-omics based approaches in infectious and rare diseases. This includes the RNA-level response, which modulates the disease severity and outcome. The need to understand the role of human genetic variants in disease severity and clinical outcome has been further highlighted during the Coronavirus disease 2019 (COVID-19) pandemic. This would enhance and contribute toward our future pandemic preparedness.

18.
J Infect Dis ; 224(4): 565-574, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1358458

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has led to significant morbidity and mortality. While most suffer from mild symptoms, some patients progress to severe disease with acute respiratory distress syndrome (ARDS) and associated systemic hyperinflammation. METHODS: First, to characterize key cytokines and their dynamics in this hyperinflammatory condition, we assessed abundance and correlative expression of a panel of 48 cytokines in patients progressing to ARDS as compared to patients with mild disease. Then, in an ongoing randomized controlled trial of convalescent plasma therapy (CPT), we analyzed rapid effects of CPT on the systemic cytokine dynamics as a correlate for the level of hypoxia experienced by the patients. RESULTS: We identified an anti-inflammatory role of CPT independent of its neutralizing antibody content. CONCLUSIONS: Neutralizing antibodies, as well as reductions in circulating interleukin-6 and interferon-γ-inducible protein 10, contributed to marked rapid reductions in hypoxia in response to CPT. CLINICAL TRIAL REGISTRY OF INDIA: CTRI/2020/05/025209. http://www.ctri.nic.in/.


Subject(s)
COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Adult , Anti-Inflammatory Agents/therapeutic use , Antibodies, Neutralizing/immunology , COVID-19/drug therapy , COVID-19/epidemiology , COVID-19/virology , Cytokines/blood , Cytokines/immunology , Female , Humans , Immunization, Passive/methods , India/epidemiology , Male , Middle Aged , Plasma , RNA, Viral/isolation & purification , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , SARS-CoV-2/isolation & purification , Viral Load
19.
Front Microbiol ; 12: 664386, 2021.
Article in English | MEDLINE | ID: covidwho-1323083

ABSTRACT

Human host and pathogen interaction is dynamic in nature and often modulated by co-pathogens with a functional role in delineating the physiological outcome of infection. Co-infection may present either as a pre-existing pathogen which is accentuated by the introduction of a new pathogen or may appear in the form of new infection acquired secondarily due to a compromised immune system. Using diverse examples of co-infecting pathogens such as Human Immunodeficiency Virus, Mycobacterium tuberculosis and Hepatitis C Virus, we have highlighted the role of co-infections in modulating disease severity and clinical outcome. This interaction happens at multiple hierarchies, which are inclusive of stress and immunological responses and together modulate the disease severity. Already published literature provides much evidence in favor of the occurrence of co-infections during SARS-CoV-2 infection, which eventually impacts the Coronavirus disease-19 outcome. The availability of biological models like 3D organoids, mice, cell lines and mathematical models provide us with an opportunity to understand the role and mechanism of specific co-infections. Exploration of multi-omics-based interactions across co-infecting pathogens may provide deeper insights into their role in disease modulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...