Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
The Journal of Molecular Diagnostics ; 2022.
Article in English | ScienceDirect | ID: covidwho-1819546

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate, multiple variants of concern (VOC) have emerged. New variants pose challenges for diagnostic platforms since sequence diversity can alter primer/probe binding sites (PBS), causing false-negative results. The Agena MassARRAY SARS-CoV-2 Panel utilizes reverse-transcription polymerase chain reaction and mass-spectrometry to detect five multiplex targets across N and ORF1ab genes. Herein, we utilize a dataset of 256 SARS-CoV-2-positive specimens collected between April 11, 2021-August 28, 2021 to evaluate target performance with paired sequencing data. During this timeframe, two targets in the N gene (N2, N3) were subject to the greatest sequence diversity. In specimens with N3 dropout, 69% harbored the Alpha-specific A28095U polymorphism that introduces a 3’-mismatch to the N3 forward PBS and increases risk of target dropout relative to specimens with 28095A (relative risk (RR): 20.02;p<0.0001;95% Confidence Interval (CI): 11.36-35.72). Furthermore, among specimens with N2 dropout, 90% harbored the Delta-specific G28916U polymorphism that creates a 3’-mismatch to the N2 probe PBS and increases target dropout risk (RR: 11.92;p<0.0001;95% CI: 8.17-14.06). These findings highlight the robust capability of Agena MassARRAY SARS-CoV-2 Panel target results to reveal circulating virus diversity and underscore the power of multi-target design to capture VOC.

2.
Journal of Medical Virology ; n/a(n/a), 2022.
Article in English | Wiley | ID: covidwho-1802455

ABSTRACT

We assessed the circulation of SARS-CoV-2 variants amongst vaccinated military personnel in Bogotá, Colombia to evaluate the mutations of certain variants and their potential for breakthrough infection in vaccinated subjects. We observed that in vaccinated individuals the most frequent infecting lineage was Mu (B.1.621 and B.1.621.1). The above possibly associated with specific mutations that confers it with vaccine-induced immune escape ability. Our findings highlight the importance of how genomic tracking coupled with epidemiological surveillance can assist in the study of novel emerging variants (e.g. Omicron) and their impact on vaccination efforts worldwide.This article is protected by copyright. All rights reserved.

3.
Travel Med Infect Dis ; 34: 101623, 2020.
Article in English | MEDLINE | ID: covidwho-1764000

ABSTRACT

INTRODUCTION: An epidemic of Coronavirus Disease 2019 (COVID-19) began in December 2019 in China leading to a Public Health Emergency of International Concern (PHEIC). Clinical, laboratory, and imaging features have been partially characterized in some observational studies. No systematic reviews on COVID-19 have been published to date. METHODS: We performed a systematic literature review with meta-analysis, using three databases to assess clinical, laboratory, imaging features, and outcomes of COVID-19 confirmed cases. Observational studies and also case reports, were included, and analyzed separately. We performed a random-effects model meta-analysis to calculate pooled prevalences and 95% confidence intervals (95%CI). RESULTS: 660 articles were retrieved for the time frame (1/1/2020-2/23/2020). After screening, 27 articles were selected for full-text assessment, 19 being finally included for qualitative and quantitative analyses. Additionally, 39 case report articles were included and analyzed separately. For 656 patients, fever (88.7%, 95%CI 84.5-92.9%), cough (57.6%, 95%CI 40.8-74.4%) and dyspnea (45.6%, 95%CI 10.9-80.4%) were the most prevalent manifestations. Among the patients, 20.3% (95%CI 10.0-30.6%) required intensive care unit (ICU), 32.8% presented with acute respiratory distress syndrome (ARDS) (95%CI 13.7-51.8), 6.2% (95%CI 3.1-9.3) with shock. Some 13.9% (95%CI 6.2-21.5%) of hospitalized patients had fatal outcomes (case fatality rate, CFR). CONCLUSION: COVID-19 brings a huge burden to healthcare facilities, especially in patients with comorbidities. ICU was required for approximately 20% of polymorbid, COVID-19 infected patients and hospitalization was associated with a CFR of >13%. As this virus spreads globally, countries need to urgently prepare human resources, infrastructure and facilities to treat severe COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus , COVID-19 , Coronavirus Infections/pathology , Cough/virology , Fever/virology , Hospitalization , Humans , Intensive Care Units , Pandemics , Pneumonia, Viral/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2
4.
J Med Virol ; 2022 Mar 03.
Article in English | MEDLINE | ID: covidwho-1756616

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic is still challenging public health systems worldwide, particularly with the emergence of novel SARS-CoV-2 variants with mutations that increase their transmissibility and immune escape. This is the case of the variant of concern Omicron that rapidly spread globally. Here, using epidemiological and genomic data we compared the situations in South Africa as the epicenter of emergence, United Kingdom, and with particular interest New York City. This rapid global dispersal from the place of first report reemphasizes the high transmissibility of Omicron, which needed only two weeks to become dominant in the United Kingdom and New York City. Our analyses suggest that as SARS-CoV-2 continues to evolve, global authorities must prioritize equity in vaccine access and continued genomic surveillance. Future studies are still needed to fully unveil the biological properties of Omicron, but what is certain is that vaccination, large-scale testing, and infection prevention efforts are the greatest arsenal against the COVID-19 pandemic.

5.
J Med Virol ; 94(4): 1606-1616, 2022 04.
Article in English | MEDLINE | ID: covidwho-1718406

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has sparked the rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines reverse-transcription polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified data set of 1262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 to April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly specific for the Alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation , Genome, Viral/genetics , Humans , New York City/epidemiology , Phosphoproteins/genetics , Polyproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
6.
J Med Virol ; 2021 Nov 11.
Article in English | MEDLINE | ID: covidwho-1718386

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has particularly affected countries with weakened health services in Latin America, where proper patient management could be a critical step to address the epidemic. In this study, we aimed to characterize and identify which epidemiological, clinical, and paraclinical risk factors defined COVID-19 infection from the first confirmed cases through the first epidemic wave in Venezuela. A retrospective analysis of consecutive suspected cases of COVID-19 admitted to a sentinel hospital was carried out, including 576 patient cases subsequently confirmed for severe acute respiratory syndrome coronavirus 2 infection. Of these, 162 (28.1%) patients met the definition criteria for severe/critical disease, and 414 (71.2%) were classified as mild/moderate disease. The mean age was 47 (SD 16) years, the majority of which were men (59.5%), and the most frequent comorbidity was arterial hypertension (23.3%). The most common symptoms included fever (88.7%), headache (65.6%), and dry cough (63.9%). Severe/critical disease affected mostly older males with low schooling (p < 0.001). Similarly, higher levels of glycemia, urea, aminotransferases, total bilirubin, lactate dehydrogenase, and erythrocyte sedimentation rate were observed in severe/critical disease patients compared to those with mild/moderate disease. Overall mortality was 7.6% (44/576), with 41.7% (28/68) dying in hospital. We identified risk factors related to COVID-19 infection, which could help healthcare providers take appropriate measures and prevent severe clinical outcomes. Our results suggest that the mortality registered by this disease in Venezuela during the first epidemic wave was underestimated. An increase in fatalities is expected to occur in the coming months unless measures that are more effective are implemented to mitigate the epidemic while the vaccination process is ongoing.

7.
J Med Virol ; 2021 Nov 09.
Article in English | MEDLINE | ID: covidwho-1718383

ABSTRACT

Numerous reports of neuropsychiatric symptoms highlighted the pathologic potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its relationship the onset and/or exacerbation of mental disease. However, coronavirus disease 2019 (COVID-19) treatments, themselves, must be considered as potential catalysts for new-onset neuropsychiatric symptoms in COVID-19 patients. To date, immediate and long-term neuropsychiatric complications following SARS-CoV-2 infection are currently unknown. Here we report on five patients with SARS-CoV-2 infection with possible associated neuropsychiatric involvement, following them clinically until resolution of their symptoms. We will also discuss the contributory roles of chloroquine and dexamethasone in these neuropsychiatric presentations.

8.
J Med Virol ; 94(6): 2471-2478, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1694693

ABSTRACT

Saliva is a promising specimen for the detection of viruses that cause upper respiratory infections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to its cost-effectiveness and noninvasive collection. However, together with intrinsic enzymes and oral microbiota, children's unique dietary habits may introduce substances that interfere with diagnostic testing. To determine whether children's dietary choices impact SARS-CoV-2 molecular detection in saliva, we performed a diagnostic study that simulates testing of real-life specimens provided from healthy children (n = 5) who self-collected saliva at home before and at 0, 20, and 60 min after eating 20 foods they selected. Each of 72 specimens was split into two volumes and spiked with SARS-CoV-2-negative or SARS-CoV-2-positive clinical standards before side-by-side testing by reverse-transcription polymerase chain reaction matrix-assisted laser desorption ionization time-of-flight (RT-PCR/MALDI-TOF) assay. Detection of internal extraction control and SARS-CoV-2 nucleic acids was reduced in replicates of saliva collected at 0 min after eating 11 of 20 foods. Interference resolved at 20 and 60 min after eating all foods except hot dogs in one participant. This represented a significant improvement in the detection of nucleic acids compared to saliva collected at 0 min after eating (p = 0.0005). We demonstrate successful detection of viral nucleic acids in saliva self-collected by children before and after eating a variety of foods. Fasting is not required before saliva collection for SARS-CoV-2 testing by RT-PCR/MALDI-TOF, but waiting for 20 min after eating is sufficient for accurate testing. These findings should be considered for SARS-CoV-2 testing and broader viral diagnostics in saliva specimens.

9.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323218

ABSTRACT

Over the course of the pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), multiple new clinical manifestations, as the consequence of the tropism of the virus, have been recognized. That includes now the neurological manifestations and conditions, such as headache, encephalitis, as well as olfactory and taste disorders. We present a series of ten cases of RT-PCR confirmed SARS-CoV-2 infected patients diagnosed with viral-associated olfactory and taste loss from four different countries.

10.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-320170

ABSTRACT

Introduction: An epidemic of Coronavirus Disease 2019 (COVID-19) begun in December 2019 in China, causing a Public Health Emergency of International Concern. Among raised questions, clinical, laboratory, and imaging features have been partially characterized in some observational studies. No systematic reviews have been published on this matter. Methods: We performed a systematic literature review with meta-analysis, using three databases to assess clinical, laboratory, imaging features, and outcomes of COVID-19 confirmed cases. Observational studies, and also case reports, were included and analyzed separately. We performed a random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence interval (95%CI). Results: 660 articles were retrieved (1/1/2020-2/23/2020). After screening by abstract/title, 27 articles were selected for full-text assessment. Of them, 19 were finally included for qualitative and quantitative analyses. Additionally, 39 case report articles were included and analyzed separately. For 656 patients, fever (88.7%, 95%CI 84.5-92.9%), cough (57.6%, 40.8-74.4%) and dyspnea (45.6%, 10.9-80.4%) were the most prevalent manifestations. Among the patients, 20.3% (95%CI 10.0-30.6%) required intensive care unit (ICU), with 32.8% presenting acute respiratory distress syndrome (ARDS) (95%CI 13.7-51.8), 6.2% (95%CI 3.1-9.3) with shock and 13.9% (95%CI 6.2-21.5%) of hospitalized patients with fatal outcomes (case fatality rate, CFR). Conclusion: COVID-19 brings a huge burden to healthcare facilities, especially in patients with comorbidities. ICU was required for approximately 20% of polymorbid, COVID-19 infected patients and this group was associated with a CFR of over 13%. As this virus spreads globally, countries need to urgently prepare human resources, infrastructure, and facilities to treat severe COVID-19.

11.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-307126

ABSTRACT

Introduction: Coronaviruses are zoonotic viruses that include human epidemic pathogens such as the Middle East Respiratory Syndrome virus (MERS-CoV), and the Severe Acute Respiratory Syndrome virus (SARS-CoV), among others (e.g., COVID-19, the recently emerging coronavirus disease). The role of animals as potential reservoirs for such pathogens remains an unanswered question. No systematic reviews have been published on this topic to date. Methods: We performed a systematic literature review with meta-analysis, using three databases to assess MERS-CoV and SARS-CoV infection in animals and its diagnosis by serological and molecular tests. We performed a random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence interval (95%CI). Results: 6,493articles were retrieved (1960-2019). After screening by abstract/title, 50 articles were selected for full-text assessment. Of them, 42 were finally included for qualitative and quantitative analyses. From a total of 34 studies (n=20,896 animals), the pool prevalence by RT-PCR for MERS-CoV was 7.2% (95%CI 5.6-8.7%), with 97.3% occurring in camels, in which pool prevalence was 10.3% (95%CI 8.3-12.3). Qatar was the country with the highest MERS-CoV RT-PCR pool prevalence, 32.6% (95%CI 4.8-60.4%). From 5 studies and 2,618 animals, for SARS-CoV, the RT-PCR pool prevalence was 2.3% (95%CI 1.3-3.3). Of those, 38.35% were reported on bats, in which the pool prevalence was 14.1% (95%CI0.0-44.6%). Discussion: A considerable proportion of infected animals tested positive, particularly by nucleic acid amplification tests (NAAT). This essential condition highlights the relevance of individual animals as reservoirs of MERS-CoV and SARS-CoV. In this meta-analysis, camels and bats were found to be positive by RT-PCR in over 10% of the cases for both;thus, suggesting their relevance in the maintenance of wild zoonotic transmission.

12.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-305444

ABSTRACT

Introduction: The SARS-CoV-2/COVID-19 pandemic has triggered the need for developing rapidly effective and safety vaccines to prevent infection, particularly in those at-risk populations such as medical personnel. The objective of this study was to assess perception of COVID-19 vaccination amongst Colombian physicians featuring two different sceneries of COVID-19 vaccination. Methods: A cross-sectional analytical study was carried out through an online survey, directed at medical staff in several cities in Colombia. The percentage of physicians who have a positive perception to be vaccinated and the associated factors that determine that decision were determined. A binomial regression analysis adjusted for age and sex was carried out, taking as a dependent variable the acceptance of free vaccination with an effectiveness of 60 and 80%. The most significant factors were determined in the non-acceptance of vaccination. Results: Between 77.1% and 90.8% of physicians in Colombia, accept COVID-19 vaccination, according to the scenario evaluated where the effectiveness of the vaccine was 60 or 80%, respectively. Medical specialty, have ever paid for a vaccine, recommend administrating the vaccine to their parents or people over 70 years and dispense the vaccine to their children were the factors to be vaccinated for free with an effectiveness of 60% and 80%. Conclusions: There is a high perception of the intention to vaccinate physicians in Colombia against COVID-19. But it is very similar to that of the general population, according to results reported in other studies.

13.
J Med Virol ; 94(4): 1606-1616, 2022 04.
Article in English | MEDLINE | ID: covidwho-1589045

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has sparked the rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines reverse-transcription polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified data set of 1262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 to April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly specific for the Alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation , Genome, Viral/genetics , Humans , New York City/epidemiology , Phosphoproteins/genetics , Polyproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
14.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296714

ABSTRACT

Background Saliva is an optimal specimen for detection of viruses that cause upper respiratory infections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to its cost-effectiveness and non-invasive collection. However, together with intrinsic enzymes and oral microbiota, children’s unique dietary habits may introduce substances that interfere with diagnostic testing. Methods To determine whether children’s dietary choices impact SARS-CoV-2 detection in saliva, we performed a diagnostic study that simulates testing of real-life specimens provided from healthy children (n=5) who self-collected saliva at home before and at 0, 20, and 60 minutes after eating from 20 foods they selected. Each of seventy-two specimens was split into two volumes and spiked with SARS-CoV-2-negative or -positive standards prior to side-by-side testing by reverse-transcription polymerase chain reaction matrix-assisted laser desorption ionization time-of-flight (RT-PCR/MALDI-TOF) assay. Results Detection of internal extraction control and SARS-CoV-2 nucleic acids was reduced in replicates of saliva collected at 0 minutes after eating 11 of 20 foods. Interference resolved at 20 and 60 minutes after eating all foods except hot dog in one participant. This represented a significant improvement in detection of nucleic acids compared to saliva collected at 0 minutes after eating (P=0.0005). Conclusions We demonstrate successful detection of viral nucleic acids in saliva self-collected by children before and after eating a variety of foods. Fasting is not required before saliva collection for SARS-CoV-2 testing by RT-PCR/MALDI-TOF, but waiting 20 minutes after eating is sufficient for accurate testing. These findings should be considered for SARS-CoV-2 testing and broader viral diagnostics in saliva specimens.

15.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296713

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate, multiple variants of concern (VOC) have emerged. New variants pose challenges for diagnostic platforms since sequence diversity can alter primer/probe binding sites (PBS), causing false-negative results. The Agena MassARRAY ® SARS-CoV-2 Panel utilizes reverse-transcription polymerase chain reaction and mass-spectrometry to detect five multiplex targets across N and ORF1ab genes. Herein, we utilize a dataset of 256 SARS-CoV-2-positive specimens collected between April 11, 2021-August 28, 2021 to evaluate target performance with paired sequencing data. During this timeframe, two targets in the N gene (N2, N3) were subject to the greatest sequence diversity. In specimens with N3 dropout, 69% harbored the Alpha-specific A28095U polymorphism that introduces a 3’-mismatch to the N3 forward PBS and increases risk of target dropout relative to specimens with 28095A (relative risk (RR): 20.02;p<0.0001;95% Confidence Interval (CI): 11.36-35.72). Furthermore, among specimens with N2 dropout, 90% harbored the Delta-specific G28916U polymorphism that creates a 3’-mismatch to the N2 probe PBS and increases target dropout risk (RR: 11.92;p<0.0001;95% CI: 8.17-14.06). These findings highlight the robust capability of Agena MassARRAY ® SARS-CoV-2 Panel target results to reveal circulating virus diversity and underscore the power of multi-target design to capture VOC.

16.
One Health ; 14: 100363, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1568967

ABSTRACT

Due to the necessity to control human-to-human spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the overwhelming majority of the generated data on this virus was solely related to the genomic characteristics of strains infecting humans; conversely, this work aimed to recover and analyze the diversity of viral genomes from non-human sources. From a set of 3595 publicly available SARS-CoV-2 genome sequences, 128 lineages were identified in non-human hosts, the majority represented by the variants of concern Delta (n = 1105, 30.7%) and Alpha (n = 466, 12.9%), followed by B.1.1.298 lineage (n = 458, 12.7%). Environment, Neovison vison, Odocoileus virginianus and Felis catus were the non-human sources with the highest number of lineages (14, 12 and 10, respectively). Phylogenomic analyses showed viral clusters from environmental sources, N. vison, O. virginianus, Panthera tigris, and Panthera leo. These clusters were collectively related to human viruses as well as all other non-human sources that were heterogeneously distributed in the phylogenetic tree. Further, the genetic details of viral genomes from bats and pangolins were independently investigated owing to their high divergence, revealing five distinct clusters. Cluster 4 exclusively included bat-sourced genomes and the SARS-CoV-2 reference strain Wuhan-01. In summary, this study identified new genetic landmarks of SARS-CoV-2 evolution. We propose potential interspecies transmission routes of SARS-CoV-2 between animals and humans, which should be considered in order to establish better pathogen surveillance and containment strategies.

17.
Diagnostics (Basel) ; 11(7)2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1526811

ABSTRACT

The emergence and rapid proliferation of Coronavirus Disease-2019, throughout the past year, has put an unprecedented strain on the global schema of health infrastructure and health economy. The time-sensitive agenda of identifying the virus in humans and delivering a vaccine to the public constituted an effort to flatten the statistical curve of viral spread as it grew exponentially. At the forefront of this effort was an exigency of developing rapid and accurate diagnostic strategies. These have emerged in various forms over the past year-each with strengths and weaknesses. To date, they fall into three categories: (1) those isolating and replicating viral RNA in patient samples from the respiratory tract (Nucleic Acid Amplification Tests; NAATs), (2) those detecting the presence of viral proteins (Rapid Antigen Tests; RATs) and serology-based exams identifying antibodies to the virus in whole blood and serum. The latter vary in their detection of immunoglobulins of known prevalence in early-stage and late-stage infection. With this review, we delineate the categories of testing measures developed to date, analyze the efficacy of collecting patient specimens from diverse regions of the respiratory tract, and present the up and coming technologies which have made pathogen identification easier and more accessible to the public.

SELECTION OF CITATIONS
SEARCH DETAIL