ABSTRACT
Recent literature on the mental health consequences of social distancing measures has found a substantial increase in self-reported sleep disorders, anxiety and depressive symptoms during lockdown periods. We investigate this issue with data on monthly purchases of psychotropic drugs from the universe of Italian pharmacies during the first wave of the COVID-19 pandemic and find that purchases of mental health-related drugs have increased with respect to 2019. However, the excess volumes do not match the massive increase in anxiety and depressive disorders found in survey-based studies. We also study the interplay between mobility, measured with anonymized mobile phone data, and mental health and report no significant effect of mobility restrictions on antidepressants and anxiolytics purchases during 2020. We provide three potential mechanisms that could drive the discrepancy between self-reported mental health surveys and psychotropic drugs prescription registries: (1) stockpiling practices in the early phases of the pandemic; (2) the adoption of compensatory behavior and (3) unexpressed and unmet needs due to both demand- and supply-side shortages in healthcare services.
Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Communicable Disease Control , Psychotropic Drugs/therapeutic use , Antidepressive Agents/therapeutic use , Italy/epidemiologyABSTRACT
We quantify social media user engagement with low-credibility online news media sources using a simple and intuitive methodology, that we showcase with an empirical case study of the Twitter debate on immigration in Italy. By assigning the Twitter users an Untrustworthiness (U) score based on how frequently they engage with unreliable media outlets and cross-checking it with a qualitative political annotation of the communities, we show that such information consumption is not equally distributed across the Twitter users. Indeed, we identify clusters characterised by a very high presence of accounts that frequently share content from less reliable news sources. The users with high U are more keen to interact with bot-like accounts that tend to inject more unreliable content into the network and to retweet that content. Thus, our methodology applied to this real-world network provides evidence, in an easy and straightforward way, that there is strong interplay between accounts that display higher bot-like activity and users more focused on news from unreliable sources and that this influences the diffusion of this information across the network.
ABSTRACT
SARS-CoV-2 has clearly shown that efficient management of infectious diseases requires a top-down approach which must be complemented with a bottom-up response to be effective. Here we investigate a novel approach to surveillance for transboundary animal diseases using African Swine (ASF) fever as a model. We collected data both at a population level and at the local level on information-seeking behavior respectively through digital data and targeted questionnaire-based surveys to relevant stakeholders such as pig farmers and veterinary authorities. Our study shows how information-seeking behavior and resulting public attention during an epidemic, can be identified through novel data streams from digital platforms such as Wikipedia. Leveraging attention in a critical moment can be key to providing the correct information at the right moment, especially to an interested cohort of people. We also bring evidence on how field surveys aimed at local workers and veterinary authorities remain a crucial tool to assess more in-depth preparedness and awareness among front-line actors. We conclude that these two tools should be used in combination to maximize the outcome of surveillance and prevention activities for selected transboundary animal diseases such as ASF.
Subject(s)
African Swine Fever/epidemiology , Epidemics/prevention & control , Epidemiological Monitoring , Livestock/virology , Animals , Awareness , Estonia/epidemiology , Farmers , Internet , Statistics, Nonparametric , Surveys and Questionnaires , SwineABSTRACT
Unrealistic optimism, the underestimation of one's risk of experiencing harm, has been investigated extensively to understand better and predict behavioural responses to health threats. Prior to the COVID-19 pandemic, a relative dearth of research existed in this domain regarding epidemics, which is surprising considering that this optimistic bias has been associated with a lack of engagement in protective behaviours critical in fighting twenty-first-century, emergent, infectious diseases. The current study addresses this gap in the literature by investigating whether people demonstrated optimism bias during the first wave of the COVID-19 pandemic in Europe, how this changed over time, and whether unrealistic optimism was negatively associated with protective measures. Taking advantage of a pre-existing international participative influenza surveillance network (n = 12,378), absolute and comparative unrealistic optimism were measured at three epidemic stages (pre-, early, peak), and across four countries-France, Italy, Switzerland and the United Kingdom. Despite differences in culture and health response, similar patterns were observed across all four countries. The prevalence of unrealistic optimism appears to be influenced by the particular epidemic context. Paradoxically, whereas absolute unrealistic optimism decreased over time, comparative unrealistic optimism increased, suggesting that whilst people became increasingly accurate in assessing their personal risk, they nonetheless overestimated that for others. Comparative unrealistic optimism was negatively associated with the adoption of protective behaviours, which is worrying, given that these preventive measures are critical in tackling the spread and health burden of COVID-19. It is hoped these findings will inspire further research into sociocognitive mechanisms involved in risk appraisal.
Subject(s)
COVID-19 , Pandemics , Europe/epidemiology , Humans , Optimism , SARS-CoV-2ABSTRACT
BACKGROUND: Emerging and re-emerging infectious diseases such as Zika, SARS, ncovid19 and Pertussis, pose a compelling challenge for epidemiologists due to their significant impact on global public health. In this context, computational models and computer simulations are one of the available research tools that epidemiologists can exploit to better understand the spreading characteristics of these diseases and to decide on vaccination policies, human interaction controls, and other social measures to counter, mitigate or simply delay the spread of the infectious diseases. Nevertheless, the construction of mathematical models for these diseases and their solutions remain a challenging tasks due to the fact that little effort has been devoted to the definition of a general framework easily accessible even by researchers without advanced modelling and mathematical skills. RESULTS: In this paper we describe a new general modeling framework to study epidemiological systems, whose novelties and strengths are: (1) the use of a graphical formalism to simplify the model creation phase; (2) the implementation of an R package providing a friendly interface to access the analysis techniques implemented in the framework; (3) a high level of portability and reproducibility granted by the containerization of all analysis techniques implemented in the framework; (4) a well-defined schema and related infrastructure to allow users to easily integrate their own analysis workflow in the framework. Then, the effectiveness of this framework is showed through a case of study in which we investigate the pertussis epidemiology in Italy. CONCLUSIONS: We propose a new general modeling framework for the analysis of epidemiological systems, which exploits Petri Net graphical formalism, R environment, and Docker containerization to derive a tool easily accessible by any researcher even without advanced mathematical and computational skills. Moreover, the framework was implemented following the guidelines defined by Reproducible Bioinformatics Project so it guarantees reproducible analysis and makes simple the developed of new user-defined workflows.
Subject(s)
Computational Biology/methods , Computer Simulation/standards , Vaccination/methods , Whooping Cough/epidemiology , Adolescent , Child , Humans , Reproducibility of ResultsABSTRACT
During the first wave of the severe acute respiratory syndrome-coronavirus-2 epidemic in the Netherlands, notifications consisted mostly of patients with relatively severe disease. To enable real-time monitoring of the incidence of mild coronavirus disease 2019 (COVID-19) - for which medical consultation might not be required - the Infectieradar web-based syndromic surveillance system was launched in mid-March 2020. Our aim was to quantify associations between Infectieradar participant characteristics and the incidence of self-reported COVID-19-like illness. Recruitment for this cohort study was via a web announcement. After registering, participants completed weekly questionnaires, reporting the occurrence of a set of symptoms. The incidence rate of COVID-19-like illness was estimated and multivariable Poisson regression used to estimate the relative risks associated with sociodemographic variables, lifestyle factors and pre-existing medical conditions. Between 17 March and 24 May 2020, 25 663 active participants were identified, who reported 7060 episodes of COVID-19-like illness over 131 404 person-weeks of follow-up. The incidence rate declined over the analysis period, consistent with the decline in notified cases. Male sex, age 65+ years and higher education were associated with a significantly lower COVID-19-like illness incidence rate (adjusted rate ratios (RRs) of 0.80 (95% CI 0.76-0.84), 0.77 (0.70-0.85), 0.84 (0.80-0.88), respectively) and the baseline characteristics ever-smoker, asthma, allergies, diabetes, chronic lung disease, cardiovascular disease and children in the household were associated with a higher incidence (RRs of 1.11 (1.04-1.19) to 1.69 (1.50-1.90)). Web-based syndromic surveillance has proven useful for monitoring the temporal trends in, and risk factors associated with, the incidence of mild disease. Increased relative risks observed for several patient factors could reflect a combination of exposure risk, susceptibility to infection and propensity to report symptoms.
Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , Self Report , Sentinel Surveillance , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Incidence , Internet , Male , Middle Aged , Netherlands/epidemiology , Risk Factors , Young AdultABSTRACT
BACKGROUND: The exposure and consumption of information during epidemic outbreaks may alter people's risk perception and trigger behavioral changes, which can ultimately affect the evolution of the disease. It is thus of utmost importance to map the dissemination of information by mainstream media outlets and the public response to this information. However, our understanding of this exposure-response dynamic during the COVID-19 pandemic is still limited. OBJECTIVE: The goal of this study is to characterize the media coverage and collective internet response to the COVID-19 pandemic in four countries: Italy, the United Kingdom, the United States, and Canada. METHODS: We collected a heterogeneous data set including 227,768 web-based news articles and 13,448 YouTube videos published by mainstream media outlets, 107,898 user posts and 3,829,309 comments on the social media platform Reddit, and 278,456,892 views of COVID-19-related Wikipedia pages. To analyze the relationship between media coverage, epidemic progression, and users' collective web-based response, we considered a linear regression model that predicts the public response for each country given the amount of news exposure. We also applied topic modelling to the data set using nonnegative matrix factorization. RESULTS: Our results show that public attention, quantified as user activity on Reddit and active searches on Wikipedia pages, is mainly driven by media coverage; meanwhile, this activity declines rapidly while news exposure and COVID-19 incidence remain high. Furthermore, using an unsupervised, dynamic topic modeling approach, we show that while the levels of attention dedicated to different topics by media outlets and internet users are in good accordance, interesting deviations emerge in their temporal patterns. CONCLUSIONS: Overall, our findings offer an additional key to interpret public perception and response to the current global health emergency and raise questions about the effects of attention saturation on people's collective awareness and risk perception and thus on their tendencies toward behavioral change.
Subject(s)
Communication , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Social Media/statistics & numerical data , Adolescent , Adult , Betacoronavirus , COVID-19 , Canada/epidemiology , Disease Outbreaks , Female , Global Health , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , SARS-CoV-2 , United Kingdom/epidemiology , United States/epidemiology , Young AdultABSTRACT
In this work, we aim to determine the main factors driving self-initiated behavioral changes during the seasonal flu. To this end, we designed and deployed a questionnaire via Influweb, a Web platform for participatory surveillance in Italy, during the 2017 - 18 and 2018 - 19 seasons. We collected 599 surveys completed by 434 users. The data provide socio-demographic information, level of concerns about the flu, past experience with illnesses, and the type of behavioral changes voluntarily implemented by each participant. We describe each response with a set of features and divide them in three target categories. These describe those that report i) no (26%), ii) only moderately (36%), iii) significant (38%) changes in behaviors. In these settings, we adopt machine learning algorithms to investigate the extent to which target variables can be predicted by looking only at the set of features. Notably, 66% of the samples in the category describing more significant changes in behaviors are correctly classified through Gradient Boosted Trees. Furthermore, we investigate the importance of each feature in the classification task and uncover complex relationships between individuals' characteristics and their attitude towards behavioral change. We find that intensity, recency of past illnesses, perceived susceptibility to and perceived severity of an infection are the most significant features in the classification task and are associated to significant changes in behaviors. Overall, the research contributes to the small set of empirical studies devoted to the data-driven characterization of behavioral changes induced by infectious diseases.