Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Expert Rev Respir Med ; 15(10): 1347-1354, 2021 10.
Article in English | MEDLINE | ID: covidwho-1196938


INTRODUCTION: Acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19) often leads to mortality. Outcomes of patients with COVID-19-related ARDS compared to ARDS unrelated to COVID-19 is not well characterized. AREAS COVERED: We performed a systematic review of PubMed, Scopus, and MedRxiv 11/1/2019 to 3/1/2021, including studies comparing outcomes in COVID-19-related ARDS (COVID-19 group) and ARDS unrelated to COVID-19 (ARDS group). Outcomes investigated were duration of mechanical ventilation-free days, intensive care unit (ICU) length-of-stay (LOS), hospital LOS, and mortality. Random effects models were fit for each outcome measure. Effect sizes were reported as pooled median differences of medians (MDMs), mean differences (MDs), or odds ratios (ORs). EXPERT OPINION: Ten studies with 2,281 patients met inclusion criteria (COVID-19: 861 [37.7%], ARDS: 1420 [62.3%]). There were no significant differences between the COVID-19 and ARDS groups for median number of mechanical ventilator-free days (MDM: -7.0 [95% CI: -14.8; 0.7], p = 0.075), ICU LOS (MD: 3.1 [95% CI: -5.9; 12.1], p = 0.501), hospital LOS (MD: 2.5 [95% CI: -5.6; 10.7], p = 0.542), or all-cause mortality (OR: 1.25 [95% CI: 0.78; 1.99], p = 0.361). Compared to the general ARDS population, results did not suggest worse outcomes in COVID-19-related ARDS.

COVID-19 , Respiratory Distress Syndrome , Humans , Intensive Care Units , Respiration, Artificial , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , SARS-CoV-2
Intell Based Med ; 3: 100013, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-907086


COVID-19 is one of the greatest global public health challenges in history. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is estimated to have an cumulative global case-fatality rate as high as 7.2% (Onder et al., 2020) [1]. As the SARS-CoV-2 spread across the globe it catalyzed new urgency in building systems to allow rapid sharing and dissemination of data between international healthcare infrastructures and governments in a worldwide effort focused on case tracking/tracing, identifying effective therapeutic protocols, securing healthcare resources, and in drug and vaccine research. In addition to the worldwide efforts to share clinical and routine population health data, there are many large-scale efforts to collect and disseminate medical imaging data, owing to the critical role that imaging has played in diagnosis and management around the world. Given reported false negative rates of the reverse transcriptase polymerase chain reaction (RT-PCR) of up to 61% (Centers for Disease Control and Prevention, Division of Viral Diseases, 2020; Kucirka et al., 2020) [2,3], imaging can be used as an important adjunct or alternative. Furthermore, there has been a shortage of test-kits worldwide and laboratories in many testing sites have struggled to process the available tests within a reasonable time frame. Given these issues surrounding COVID-19, many groups began to explore the benefits of 'big data' processing and algorithms to assist with the diagnosis and therapeutic development of COVID-19.