Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Virol J ; 19(1): 112, 2022 06 27.
Article in English | MEDLINE | ID: covidwho-1905664

ABSTRACT

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory disease in humans, with a case fatality rate of approximately 35%, thus posing a considerable threat to public health. The lack of approved vaccines or antivirals currently constitutes a barrier in controlling disease outbreaks and spread. METHODS: In this study, using a mammalian expression system, which is advantageous for maintaining correct protein glycosylation patterns, we constructed chimeric MERS-CoV virus-like particles (VLPs) and determined their immunogenicity and protective efficacy in mice. RESULTS: Western blot and cryo-electron microscopy analyses demonstrated that MERS-CoV VLPs were efficiently produced in cells co-transfected with MERS-CoV spike (S), envelope, membrane and murine hepatitis virus nucleocapsid genes. We examined their ability as a vaccine in a human dipeptidyl peptidase 4 knock-in C57BL/6 congenic mouse model. Mice immunized with MERS VLPs produced S-specific antibodies with virus neutralization activity. Furthermore, MERS-CoV VLP immunization provided complete protection against a lethal challenge with mouse-adapted MERS-CoV and improved virus clearance in the lung. CONCLUSIONS: Overall, these data demonstrate that MERS-CoV VLPs have excellent immunogenicity and represent a promising vaccine candidate.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Mammals , Mice , Mice, Inbred C57BL , Middle East Respiratory Syndrome Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Virus-Like Particle/genetics , Viral Vaccines/genetics
2.
Viruses ; 14(5)2022 05 15.
Article in English | MEDLINE | ID: covidwho-1884377

ABSTRACT

In this study, we investigated the correlation between the mechanism involved in porcine epidemic diarrhea virus (PEDV) replication and autophagic flux. In this study, we found that as PEDV replicated, production of LC3-II was significantly induced up to 24 h post-infection (hpi). Interestingly, although there was significant production of LC3-II, greater p62 accumulation was simultaneously found. Pretreatment with rapamycin significantly induced PEDV replication, but autolysosome formation was reduced. These results were confirmed by the evaluation of ATG5/ATG12 and LAMP1/LAMP2. Taken together, we conclude that PEDV infection induces autophagosome formation but inhibits autolysosome formation during replication.


Subject(s)
Autophagosomes/metabolism , Porcine epidemic diarrhea virus , Animals , Autophagosomes/genetics , Chlorocebus aethiops , Lysosomes/genetics , Lysosomes/metabolism , Macroautophagy , Porcine epidemic diarrhea virus/immunology , Swine , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL