Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Life ; 12(1):68, 2022.
Article in English | MDPI | ID: covidwho-1613886

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is highly contagious and causes coronavirus disease 2019 (COVID-19). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the most accurate and reliable molecular assay to detect active SARS-CoV-2 infection. However, a rapid increase in test subjects has created a global bottleneck in testing capacity. Given that efficient nucleic acid extraction greatly affects reliable and accurate testing results, we compared three extraction platforms: MagNA Pure 96 DNA and Viral NA Small Volume kit on MagNA Pure 96 (Roche, Basel, Switzerland), careGENETM Viral/Pathogen HiFi Nucleic Acid Isolation kit (WELLS BIO Inc., Seoul, Korea) on KingFisher Flex (Thermo Fisher Scientific, Rocklin, CA, USA), and SGRespiTM Pure kit (Seegene Inc., Seoul, Korea) on Maelstrom 9600 (Taiwan Advanced Nanotech Inc., Taoyuan, Taiwan). RNA was extracted from 245 residual respiratory specimens from the different types of samples (i.e., NPS, sputum, and saliva) using three different kits. The 95% limits of detection of median tissue culture infectious dose per milliliter (TCID50/mL) for the MagNA Pure 96, KingFisher Flex, and Maelstrom 9600 were 0.37–3.15 ×101, 0.41–3.62 ×101, and 0.33–1.98 ×101, respectively. The KingFisher Flex platform exhibited 99.2% sensitivity and 100% specificity, whereas Maelstrom 9600 exhibited 98.3–100% sensitivity and 100% specificity. Bland–Altman analysis revealed a 95.2% concordance between MagNA Pure 96 and KingFisher Flex and 95.4% concordance between MagNA Pure 96 and Maelstrom 9600, indicating that all three platforms provided statistically reliable results. This suggests that two modifying platforms, KingFisher Flex and Maelstrom 9600, are accurate and scalable extraction platforms for large-scale SARS-CoV-2 clinical detection and could help the management of COVID-19 patients.

2.
PLoS One ; 16(12): e0260850, 2021.
Article in English | MEDLINE | ID: covidwho-1613341

ABSTRACT

Novel strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) harboring nucleotide changes (mutations) in the spike gene have emerged and are spreading rapidly. These mutations are associated with SARS-CoV-2 transmissibility, virulence, or resistance to some neutralizing antibodies. Thus, the accurate detection of spike mutants is crucial for controlling SARS-CoV-2 transmission and identifying neutralizing antibody-resistance caused by amino acid changes in the receptor-binding domain. Here, we developed five SARS-CoV-2 spike gene primer pairs (5-SSG primer assay; 69S, 144S, 417S, 484S, and 570S) and verified their ability to detect nine key spike mutations (ΔH69/V70, T95I, G142D, ΔY144, K417T/N, L452R, E484K/Q, N501Y, and H655Y) using a Sanger sequencing-based assay. The 5-SSG primer assay showed 100% specificity and a conservative limit of detection with a median tissue culture infective dose (TCID50) values of 1.4 × 102 TCID50/mL. The accuracy of the 5-SSG primer assay was confirmed by next generation sequencing. The results of these two approaches showed 100% consistency. Taken together, the ability of the 5-SSG primer assay to accurately detect key SARS-CoV-2 spike mutants is reliable. Thus, it is a useful tool for detecting SARS-CoV-2 spike gene mutants in a clinical setting, thereby helping to improve the management of patients with COVID-19.


Subject(s)
Mutation , SARS-CoV-2/genetics , Sequence Analysis, RNA/methods , Spike Glycoprotein, Coronavirus/genetics , DNA Primers/genetics , High-Throughput Nucleotide Sequencing , Humans , Limit of Detection , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry
3.
Int J Environ Res Public Health ; 18(21)2021 11 07.
Article in English | MEDLINE | ID: covidwho-1512311

ABSTRACT

This study investigated the effect of oral health education using a mobile app (OHEMA) on the oral health and swallowing-related quality of life (SWAL-QoL) of the elderly population in a community-based integrated care project (CICP). Forty elderly individuals in the CICP were randomized into intervention and control groups. OHEMA provided information on customized oral health care management, oral exercises, and intraoral and extraoral massage methods for 50 min/session, once a week, for 6 weeks. Pre- and post-intervention surveys assessed the unstimulated salivary flow rate, subjective oral dryness, tongue pressure, and SWAL-QoL, which were analyzed using ANCOVA and repeated measures ANOVA. In the intervention group, tongue pressure increased significantly from pre- (17.75) to post-intervention (27.24) (p < 0.001), and subjective oral dryness decreased from pre- (30.75) to post-intervention (18.50). The unstimulated salivary flow rate had a higher mean score in the intervention group (7.19) than in the control group (5.04) (p < 0.001). The SWAL-QoL significantly improved from pre- (152.10) to post-intervention (171.50) in the intervention group (p < 0.001) but did not change significantly in the control group (p > 0.05). OHEMA appears to be a useful tool for oral health education for the elderly as it improved the SWAL-QoL, with increased tongue pressure and reduced oral dryness.


Subject(s)
Delivery of Health Care, Integrated , Mobile Applications , Aged , Deglutition , Health Education , Humans , Oral Health , Pressure , Quality of Life , Tongue
4.
Diagnostics (Basel) ; 11(6)2021 Jun 13.
Article in English | MEDLINE | ID: covidwho-1270017

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggers disease with nonspecific symptoms that overlap those of infections caused by other seasonal respiratory viruses (RVs), such as the influenza virus (Flu) or respiratory syncytial virus (RSV). A molecular assay for accurate and rapid detection of RV and SARS-CoV-2 is crucial to manage these infections. Here, we compared the analytical performance and clinical reliability of Allplex™ SARS-CoV-2/FluA/FluB/RSV (SC2FabR; Seegene Inc., Seoul, South Korea) kit with those of four commercially available RV detection kits. Upon testing five target viral strains (SARS-CoV-2, FluA, FluB, RSV A, and RSV B), the analytical performance of SC2FabR was similar to that of the other kits, with no significant difference (p ≥ 0.78) in z-scores. The efficiency of SC2FabR (E-value, 81-104%) enabled reliable SARS-CoV-2 and seasonal RV detection in 888 nasopharyngeal swab specimens processed using a fully automated nucleic acid extraction platform. Bland-Altman analyses revealed an agreement value of 95.4% (SD ± 1.96) for the kits, indicating statistically similar results for all five. In conclusion, SC2FabR is a rapid and accurate diagnostic tool for both SARS-CoV-2 and seasonal RV detection, allowing for high-throughput RV analysis with efficiency comparable to that of commercially available kits. This can be used to help manage respiratory infections in patients during and after the coronavirus disease 2019 pandemic.

5.
Vet Q ; 40(1): 183-189, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-361230

ABSTRACT

Background: Outbreaks of porcine epidemic diarrhea virus (PEDV) infection have re-emerged and spread rapidly worldwide, resulting in significant economic losses. Vaccination is the best way to prevent PEDV infection in young piglets.Objective: To enhance the efficacy of an inactivated vaccine against PEDV, we evaluated the adjuvant properties of Fc domain of IgG.Methods: Fifteen crossbred gilts (180 ∼ 210 days old) were used. Five pigs in group 1 were intramuscularly vaccinated twice at 4 weeks and 2 weeks prior to farrowing with 106 TCID50 of inactivated PEDV. Five pigs in group 2 were intramuscularly vaccinated twice at 4 weeks and 2 weeks prior to farrowing with 106 TCID50 of inactivated PEDV-sFc. Five pigs in group 3 were not vaccinated and served as negative controls. Serum samples were collected at farrowing and subjected to ELISA, a serum neutralizing (SN) test, and a cytokine assay. Statistical analysis was performed by a two-tailed unpaired t-test.Results: Vero cells expressing swine IgG Fc on its surface was established. When PEDV was propagated in the cells expressing the swine Fc, PEDV virion incorporated the Fc. Immunization of pigs with inactivated PEDV harbouring Fc induced significantly higher antibody production against PEDV, comparing to the immunization with normal inactivated PEDV. In addition, we observed significantly increased IFN-γ levels in sera.Conclusion: Our results indicate that Fc molecule facilitate immune responses and PEDV harbouring Fc molecule could be a possible vaccine candidate. However, a challenge experiment would be needed to investigate the protective efficacy of PEDV harbouring Fc.


Subject(s)
Coronavirus Infections/veterinary , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Porcine epidemic diarrhea virus/immunology , Swine Diseases/immunology , Adjuvants, Immunologic , Animals , Chlorocebus aethiops , Coronavirus Infections/immunology , Female , Immunization , Neutralization Tests , Sus scrofa , Swine , Swine Diseases/virology , Vaccines, Inactivated/immunology , Vero Cells , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...