Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
J Hosp Infect ; 131: 34-42, 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2061537


BACKGROUND: Barriers to rapid return of sequencing results can affect the utility of sequence data for infection prevention and control decisions. AIM: To undertake a mixed-methods analysis to identify challenges that sites faced in achieving a rapid turnaround time (TAT) in the COVID-19 Genomics UK Hospital-Onset COVID-19 Infection (COG-UK HOCI) study. METHODS: For the quantitative analysis, timepoints relating to different stages of the sequencing process were extracted from both the COG-UK HOCI study dataset and surveys of study sites. Qualitative data relating to the barriers and facilitators to achieving rapid TATs were included from thematic analysis. FINDINGS: The overall TAT, from sample collection to receipt of sequence report by infection control teams, varied between sites (median 5.1 days, range 3.0-29.0 days). Most variation was seen between reporting of a positive COVID-19 polymerase chain reaction (PCR) result to sequence report generation (median 4.0 days, range 2.3-27.0 days). On deeper analysis, most of this variability was accounted for by differences in the delay between the COVID-19 PCR result and arrival of the sample at the sequencing laboratory (median 20.8 h, range 16.0-88.7 h). Qualitative analyses suggest that closer proximity of sequencing laboratories to diagnostic laboratories, increased staff flexibility and regular transport times facilitated a shorter TAT. CONCLUSION: Integration of pathogen sequencing into diagnostic laboratories may help to improve sequencing TAT to allow sequence data to be of tangible value to infection control practice. Adding a quality control step upstream to increase capacity further down the workflow may also optimize TAT if lower quality samples are removed at an earlier stage.