Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Year range
1.
Cell Rep ; 39(13): 111009, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1944463

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sub-lineage has gained in proportion relative to BA.1. Because spike (S) protein variations may underlie differences in their pathobiology, here we determine cryoelectron microscopy (cryo-EM) structures of the BA.2 S ectodomain and compare these with previously determined BA.1 S structures. BA.2 receptor-binding domain (RBD) mutations induce remodeling of the RBD structure, resulting in tighter packing and improved thermostability. Interprotomer RBD interactions are enhanced in the closed (or 3-RBD-down) BA.2 S, while the fusion peptide is less accessible to antibodies than in BA.1. Binding and pseudovirus neutralization assays reveal extensive immune evasion while defining epitopes of two outer RBD face-binding antibodies, DH1044 and DH1193, that neutralize both BA.1 and BA.2. Taken together, our results indicate that stabilization of the closed state through interprotomer RBD-RBD packing is a hallmark of the Omicron variant and show differences in key functional regions in the BA.1 and BA.2 S proteins.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Cryoelectron Microscopy , Humans , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus
2.
Mol Cell ; 82(11): 2050-2068.e6, 2022 06 02.
Article in English | MEDLINE | ID: covidwho-1937002

ABSTRACT

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor-binding domain (RBD) and neutralizing antibody epitope presentation, affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-333084

ABSTRACT

Summary The BA.2 lineage of the SARS-CoV-2 Omicron variant has gained in proportion relative to BA.1. As differences in their spike (S) proteins may underlie differences in their pathobiology, here we determined cryo-EM structures of a BA.2 S protein ectodomain and compared these to previously determined BA.1 S structures. BA.2 Receptor Binding Domain (RBD) mutations induced remodeling of the internal RBD structure resulting in its improved thermostability and tighter packing within the 3-RBD-down spike. In the S2 subunit, the fusion peptide in the BA.2 was less accessible to antibodies than in BA.1. Pseudovirus neutralization and spike binding assays revealed extensive immune evasion while defining epitopes of two RBD-directed antibodies, DH1044 and DH1193, that bound the outer RBD face to neutralize both BA.1 and BA.2. Taken together, our results indicate that stabilization of the 3-RBD-down state through interprotomer RBD-RBD packing is a hallmark of the Omicron lineages, and reveal differences in key functional regions in the BA.1 and BA.2 S proteins.

4.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327134

ABSTRACT

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor binding domain (RBD) and neutralizing antibody epitope presentation affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.

5.
Nat Struct Mol Biol ; 28(2): 128-131, 2021 02.
Article in English | MEDLINE | ID: covidwho-1010060

ABSTRACT

The SARS-CoV-2 spike (S) protein, a primary target for COVID-19 vaccine development, presents its receptor binding domain in two conformations, the receptor-accessible 'up' or receptor-inaccessible 'down' states. Here we report that the commonly used stabilized S ectodomain construct '2P' is sensitive to cold temperatures, and this cold sensitivity is abrogated in a 'down' state-stabilized ectodomain. Our findings will impact structural, functional and vaccine studies that use the SARS-CoV-2 S ectodomain.


Subject(s)
Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Viral/chemistry , COVID-19 Vaccines/chemistry , Cold Temperature , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Humans , Protein Denaturation , Protein Domains , Protein Stability , Spike Glycoprotein, Coronavirus/ultrastructure , Surface Plasmon Resonance
6.
Nat Struct Mol Biol ; 27(10): 925-933, 2020 10.
Article in English | MEDLINE | ID: covidwho-662441

ABSTRACT

The coronavirus (CoV) spike (S) protein, involved in viral-host cell fusion, is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S-protein, with its mobile domains, presents a moving target to the immune system. Here, to better understand S-protein mobility, we implemented a structure-based vector analysis of available ß-CoV S-protein structures. Despite an overall similarity in domain organization, we found that S-proteins from different ß-CoVs display distinct configurations. Based on this analysis, we developed two soluble ectodomain constructs for the SARS-CoV-2 S-protein, in which the highly immunogenic and mobile receptor binding domain (RBD) is either locked in the all-RBDs 'down' position or adopts 'up' state conformations more readily than the wild-type S-protein. These results demonstrate that the conformation of the S-protein can be controlled via rational design and can provide a framework for the development of engineered CoV S-proteins for vaccine applications.


Subject(s)
Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Binding Sites , Cryoelectron Microscopy , Microscopy, Electron/methods , Models, Molecular , Mutation , Protein Conformation , Protein Domains , Protein Subunits/chemistry , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL