Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317607

ABSTRACT

Background: The COVID-19 pandemic is impressively challenging the healthcare system. Several prognostic models have been validated but few of them are implemented in daily practice. The objective of the study was to validate a machine-learning risk prediction model using easy-to-obtain parameters, potentially available at home, to help identifying patients with COVID-19 who are at higher risk of death. Methods: The training cohort included all patients admitted to Fondazione Policlinico Gemelli with COVID-19 from March 5, 2020 to November 5, 2020. Afterwards, the model was tested on all patients admitted to the same hospital with COVID-19 from November 6, 2020 to February 5 2021. The primary outcome was in-hospital mortality.The out-of-sample performance of the model was estimated from the training set in terms of Area under the Receiving Operator Curve (AUROC) and classification matrix statistics by averaging the results of 5-fold cross validation repeated 3-times and comparing the results with those obtained on the test set. An explanation analysis of the model, based on the SHapley Additive exPlanations (SHAP), is also presented. To assess the subsequent time evolution, the change in paO2/FiO2 (P/F) at 48 hours after the baseline measurement was plotted against its baseline value. Results: Among the 921 patients included in the training cohort, 120 died (13%). Variables selected for the model were age, platelet count, SpO2, blood urea nitrogen (BUN), hemoglobin, C-reactive protein, neutrophil count, and sodium. The results of the 5-fold cross-validation repeated 3-times gave AUROC of 0.87, and statistics of the classification matrix to the Youden index as follows: sensitivity 0.840, specificity 0.774, negative predictive value 0.971. Then, the model was tested on a new population (n=1463) in which the mortality rate was 22.6 %. The test model showed AUROC 0.818, sensitivity 0.813, specificity 0.650, negative predictive value 0.922. Considering the first quartile of the predicted risk score (low-risk score group), the mortality rate was 1.6%, 17.8% in the second and third quartile (high-risk score group) and 53.5% in the fourth quartile (very high-risk score group). The three risk score groups showed good discrimination for the P/F value at admission, and a positive correlation was found for the low-risk class to P/F at 48 hours after admission (adjusted R-squared= 0.48). Conclusions: We developed a predictive model of death for people with SARS-CoV-2 infection by including only easy-to-obtain variables (abnormal blood count, BUN, C-reactive protein, sodium and lower SpO2). It demonstrated good accuracy and high power of discrimination. The simplicity of the model makes the risk prediction applicable for patients at home, in the Emergency Department, or during hospitalization.

2.
Comput Methods Programs Biomed ; 217: 106655, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1654240

ABSTRACT

BACKGROUND: The COVID-19 pandemic affected healthcare systems worldwide. Predictive models developed by Artificial Intelligence (AI) and based on timely, centralized and standardized real world patient data could improve management of COVID-19 to achieve better clinical outcomes. The objectives of this manuscript are to describe the structure and technologies used to construct a COVID-19 Data Mart architecture and to present how a large hospital has tackled the challenge of supporting daily management of COVID-19 pandemic emergency, by creating a strong retrospective knowledge base, a real time environment and integrated information dashboard for daily practice and early identification of critical condition at patient level. This framework is also used as an informative, continuously enriched data lake, which is a base for several on-going predictive studies. METHODS: The information technology framework for clinical practice and research was described. It was developed using SAS Institute software analytics tool and SAS® Vyia® environment and Open-Source environment R ® and Python ® for fast prototyping and modeling. The included variables and the source extraction procedures were presented. RESULTS: The Data Mart covers a retrospective cohort of 5528 patients with SARS-CoV-2 infection. People who died were older, had more comorbidities, reported more frequently dyspnea at onset, had higher d-dimer, C-reactive protein and urea nitrogen. The dashboard was developed to support the management of COVID-19 patients at three levels: hospital, single ward and individual care level. INTERPRETATION: The COVID-19 Data Mart based on integration of a large collection of clinical data and an AI-based integrated framework has been developed, based on a set of automated procedures for data mining and retrieval, transformation and integration, and has been embedded in the clinical practice to help managing daily care. Benefits from the availability of a Data Mart include the opportunity to build predictive models with a machine learning approach to identify undescribed clinical phenotypes and to foster hospital networks. A real-time updated dashboard built from the Data Mart may represent a valid tool for a better knowledge of epidemiological and clinical features of COVID-19, especially when multiple waves are observed, as well as for epidemic and pandemic events of the same nature (e. g. with critical clinical conditions leading to severe pulmonary inflammation). Therefore, we believe the approach presented in this paper may find several applications in comparable situations even at region or state levels. Finally, models predicting the course of future waves or new pandemics could largely benefit from network of DataMarts.


Subject(s)
COVID-19 , Artificial Intelligence , COVID-19/epidemiology , Clinical Decision-Making , Humans , Pandemics , Retrospective Studies , SARS-CoV-2
3.
Sci Rep ; 11(1): 21136, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1493228

ABSTRACT

The COVID-19 pandemic is impressively challenging the healthcare system. Several prognostic models have been validated but few of them are implemented in daily practice. The objective of the study was to validate a machine-learning risk prediction model using easy-to-obtain parameters to help to identify patients with COVID-19 who are at higher risk of death. The training cohort included all patients admitted to Fondazione Policlinico Gemelli with COVID-19 from March 5, 2020, to November 5, 2020. Afterward, the model was tested on all patients admitted to the same hospital with COVID-19 from November 6, 2020, to February 5, 2021. The primary outcome was in-hospital case-fatality risk. The out-of-sample performance of the model was estimated from the training set in terms of Area under the Receiving Operator Curve (AUROC) and classification matrix statistics by averaging the results of fivefold cross validation repeated 3-times and comparing the results with those obtained on the test set. An explanation analysis of the model, based on the SHapley Additive exPlanations (SHAP), is also presented. To assess the subsequent time evolution, the change in paO2/FiO2 (P/F) at 48 h after the baseline measurement was plotted against its baseline value. Among the 921 patients included in the training cohort, 120 died (13%). Variables selected for the model were age, platelet count, SpO2, blood urea nitrogen (BUN), hemoglobin, C-reactive protein, neutrophil count, and sodium. The results of the fivefold cross-validation repeated 3-times gave AUROC of 0.87, and statistics of the classification matrix to the Youden index as follows: sensitivity 0.840, specificity 0.774, negative predictive value 0.971. Then, the model was tested on a new population (n = 1463) in which the case-fatality rate was 22.6%. The test model showed AUROC 0.818, sensitivity 0.813, specificity 0.650, negative predictive value 0.922. Considering the first quartile of the predicted risk score (low-risk score group), the case-fatality rate was 1.6%, 17.8% in the second and third quartile (high-risk score group) and 53.5% in the fourth quartile (very high-risk score group). The three risk score groups showed good discrimination for the P/F value at admission, and a positive correlation was found for the low-risk class to P/F at 48 h after admission (adjusted R-squared = 0.48). We developed a predictive model of death for people with SARS-CoV-2 infection by including only easy-to-obtain variables (abnormal blood count, BUN, C-reactive protein, sodium and lower SpO2). It demonstrated good accuracy and high power of discrimination. The simplicity of the model makes the risk prediction applicable for patients in the Emergency Department, or during hospitalization. Although it is reasonable to assume that the model is also applicable in not-hospitalized persons, only appropriate studies can assess the accuracy of the model also for persons at home.


Subject(s)
COVID-19/mortality , Machine Learning , Pandemics , SARS-CoV-2 , Aged , Aged, 80 and over , Blood Cell Count , Blood Chemical Analysis , COVID-19/blood , Cohort Studies , Female , Hospital Mortality , Humans , Male , Middle Aged , Models, Statistical , Multivariate Analysis , Oxygen/blood , Pandemics/statistics & numerical data , ROC Curve , Risk Factors , Rome/epidemiology
4.
Front Bioeng Biotechnol ; 8: 619980, 2020.
Article in English | MEDLINE | ID: covidwho-1058408

ABSTRACT

The COVID-19 pandemic has become a priority in the health systems of all nations worldwide. In fact, there are currently no specific drugs or preventive treatments such as vaccines. The numerous therapies available today aim to counteract the symptoms caused by the viral infection that in some subjects can evolve causing acute respiratory distress syndromes (ARDS) with consequent admission to intensive care unit. The exacerbated response of the immune system, through cytokine storm, causes extensive damage to the lung tissue, with the formation of edema, fibrotic tissues and susceptibility to opportunistic infections. The inflammatory picture is also aggravated by disseminated intravascular coagulation which worsens the damage not only to the respiratory system, but also to other organs. In this context, perinatal cells represent a valid strategy thanks to their strong immunomodulatory potential, their safety profile, the ability to reduce fibrosis and stimulate reparative processes. Furthermore, perinatal cells exert antibacterial and antiviral actions. This review therefore provides an overview of the characteristics of perinatal cells with a particular focus on the beneficial effects that they could have in patients with COVID-19, and more specifically for their potential use in the treatment of ARDS and sepsis.

5.
J Control Release ; 325: 135-140, 2020 09 10.
Article in English | MEDLINE | ID: covidwho-626153

ABSTRACT

The COVID-19 epidemic represents an unprecedented global health emergency, further aggravated by the lack of effective therapies. For this reason, several clinical trials are testing different off-label drugs, already approved for other pathologies. Mesenchymal stem/stromal cells (MSCs) have been tested during the last two decades for the treatment of various pathologic conditions, including acute and chronic lung diseases, both in animal models and in patients. In particular, promising results have been obtained in the experimental therapy of acute respiratory distress syndrome, which represents the most threatening complication of COVID-19 infection. Furthermore, more recently, great interest has been devoted to the possible clinical applications of extracellular vesicles secreted by MSCs, nanoparticles that convey much of the biological effects and of the therapeutic efficacy of their cells of origin. This review summarizes the experimental evidence underlying the possible use of MSCs and of MSC-EVs in severe COVID-19 infection and underlines the need to evaluate the possible efficacy of these therapeutic approaches through controlled studies under the supervision of the Regulatory Authorities.


Subject(s)
Coronavirus Infections/therapy , Extracellular Vesicles , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Pneumonia, Viral/therapy , Pneumonia/therapy , Animals , COVID-19 , Coronavirus Infections/complications , Humans , Pandemics , Pneumonia/etiology , Pneumonia, Viral/complications
SELECTION OF CITATIONS
SEARCH DETAIL