Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Emerg Nurs ; 48(4): 417-422, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1889568

ABSTRACT

INTRODUCTION: ED health care professionals are at the frontline of evaluation and management of patients with acute, and often undifferentiated, illness. During the initial phase of the SARS-CoV-2 outbreak, there were concerns that ED health care professionals may have been at increased risk of exposure to SARS-CoV-2 due to difficulty in early identification of patients. This study assessed the seroprevalence of SARS-CoV-2 antibodies among ED health care professionals without confirmed history of COVID-19 infection at a quaternary academic medical center. METHODS: This study used a cross-sectional design. An ED health care professional was deemed eligible if they had worked at least 4 shifts in the adult emergency department from April 1, 2020, through May 31, 2020, were asymptomatic on the day of blood draw, and were not known to have had prior documented COVID-19 infection. The study period was December 17, 2020, to January 27, 2021. Eligible participants completed a questionnaire and had a blood sample drawn. Samples were run on the Roche Cobas Elecsys Anti-SARS-CoV-2 antibody assay. RESULTS: Of 103 health care professionals (16 attending physicians, 4 emergency residents, 16 advanced practice professionals, and 67 full-time emergency nurses), only 3 (2.9%; exact 95% CI, 0.6%-8.3%) were seropositive for SARS-CoV-2 antibodies. DISCUSSION: At this quaternary academic medical center, among those who volunteered to take an antibody test, there was a low seroprevalence of SARS-CoV-2 antibodies among ED clinicians who were asymptomatic at the time of blood draw and not known to have had prior COVID-19 infection.


Subject(s)
COVID-19 , Adult , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , Health Personnel , Humans , SARS-CoV-2 , Seroepidemiologic Studies
2.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1683718

ABSTRACT

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

3.
Am J Respir Crit Care Med ; 205(5): 507-519, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1560818

ABSTRACT

Rationale: Alveolar and endothelial injury may be differentially associated with coronavirus disease (COVID-19) severity over time. Objectives: To describe alveolar and endothelial injury dynamics and associations with COVID-19 severity, cardiorenovascular injury, and outcomes. Methods: This single-center observational study enrolled patients with COVID-19 requiring respiratory support at emergency department presentation. More than 40 markers of alveolar (including receptor for advanced glycation endproducts [RAGE]), endothelial (including angiopoietin-2), and cardiorenovascular injury (including renin, kidney injury molecule-1, and troponin-I) were serially compared between invasively and spontaneously ventilated patients using mixed-effects repeated-measures models. Ventilatory ratios were calculated for intubated patients. Associations of biomarkers with modified World Health Organization scale at Day 28 were determined with multivariable proportional-odds regression. Measurements and Main Results: Of 225 patients, 74 (33%) received invasive ventilation at Day 0. RAGE was 1.80-fold higher in invasive ventilation patients at Day 0 (95% confidence interval [CI], 1.50-2.17) versus spontaneous ventilation, but decreased over time in all patients. Changes in alveolar markers did not correlate with changes in endothelial, cardiac, or renal injury markers. In contrast, endothelial markers were similar to lower at Day 0 for invasive ventilation versus spontaneous ventilation, but then increased over time only among intubated patients. In intubated patients, angiopoietin-2 was similar (fold difference, 1.02; 95% CI, 0.89-1.17) to nonintubated patients at Day 0 but 1.80-fold higher (95% CI, 1.56-2.06) at Day 3; cardiorenovascular injury markers showed similar patterns. Endothelial markers were not consistently associated with ventilatory ratios. Endothelial markers were more often significantly associated with 28-day outcomes than alveolar markers. Conclusions: Alveolar injury markers increase early. Endothelial injury markers increase later and are associated with cardiorenovascular injury and 28-day outcome. Alveolar and endothelial injury likely contribute at different times to disease progression in severe COVID-19.


Subject(s)
Alveolar Epithelial Cells , COVID-19/physiopathology , Endothelium/injuries , Patient Acuity , Pulmonary Alveoli/injuries , Respiratory Distress Syndrome/physiopathology , Adult , Aged , Biomarkers/analysis , Critical Care Outcomes , Female , Humans , Male , Middle Aged , Renin-Angiotensin System , Respiration, Artificial , SARS-CoV-2
4.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1213572

ABSTRACT

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

SELECTION OF CITATIONS
SEARCH DETAIL