Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
1.
Proc Natl Acad Sci U S A ; 120(4): e2217840120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36656861

ABSTRACT

BAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1ß forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Mesothelioma, Malignant , Mesothelioma , Ubiquitin Thiolesterase , Humans , Heterozygote , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mesothelioma/genetics , Mesothelioma/metabolism , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/complications , Mutation , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism
2.
J Thorac Cardiovasc Surg ; 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36369159

ABSTRACT

OBJECTIVE: Multimodality treatment for resectable non-small cell lung cancer has long remained at a therapeutic plateau. Immune checkpoint inhibitors are highly effective in advanced non-small cell lung cancer and promising preoperatively in small clinical trials for resectable non-small cell lung cancer. This large multicenter trial tested the safety and efficacy of neoadjuvant atezolizumab and surgery. METHODS: Patients with stage IB to select IIIB resectable non-small cell lung cancer and Eastern Cooperative Oncology Group performance status 0/1 were eligible. Patients received atezolizumab 1200 mg intravenously every 3 weeks for 2 cycles or less followed by resection. The primary end point was major pathological response in patients without EGFR/ALK+ alterations. Pre- and post-treatment computed tomography, positron emission tomography, pulmonary function tests, and biospecimens were obtained. Adverse events were recorded by Common Terminology Criteria for Adverse Events v.4.0. RESULTS: From April 2017 to February 2020, 181 patients were entered in the study. Baseline characteristics were mean age, 65.1 years; female, 93 of 181 (51%); nonsquamous histology, 112 of 181 (62%); and clinical stages IIB to IIIB, 147 of 181 (81%). In patients without EGFR/ALK alterations who underwent surgery, the major pathological response rate was 20% (29/143; 95% confidence interval, 14-28) and the pathological complete response rate was 6% (8/143; 95% confidence interval, 2-11). There were no grade 4/5 treatment-related adverse events preoperatively. Of 159 patients (87.8%) undergoing surgery, 145 (91%) had pathologic complete resection. There were 5 (3%) intraoperative complications, no intraoperative deaths, and 2 postoperative deaths within 90 days, 1 treatment related. Median disease-free and overall survival have not been reached. CONCLUSIONS: Neoadjuvant atezolizumab in resectable stage IB to IIIB non-small cell lung cancer was well tolerated, yielded a 20% major pathological response rate, and allowed safe, complete surgical resection. These results strongly support the further development of immune checkpoint inhibitors as preoperative therapy in locally advanced non-small cell lung cancer.

3.
Aorta (Stamford) ; 10(3): 104-113, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36318931

ABSTRACT

BACKGROUND: Coronavirus disease-19 (COVID-19) remains a public health crisis. The epidemiology of COVID-19-associated large- and medium-sized-vessel pathology is not well characterized. The aim of this study is to identify patients with possible COVID-19-associated large- and medium-sized-vessel pathology based on computed tomography (CT) imaging to provide insight into this rare, but potentially devastating, cardiovascular manifestation. METHODS: This is a single-center retrospective review of patients with CT chest, abdomen, and/or pelvis concerning for large- and medium-vessel pathology and confirmed COVID-19 infection from March 1, 2020 to October 31, 2020. RESULTS: During the study period, 6,553 CT reports were reviewed and pertinent imaging was identified in 139 patients. Of these, 8 patients (median age: 59 years, range 51-82) were COVID-19 positive. All patients had preexisting cardiovascular risk factors and three (37.5%) had an autoimmune disease. Four patients were never hospitalized for COVID-19. Among these, two presented to the hospital at a median of 39 days (range: 27-50) after their initial COVID-19 test with chest and back pain where imaging revealed extensive aortic pathology. One patient required surgical management for aortic pathology. All other patients were treated with expectant management and outpatient follow-up. CONCLUSION: The clinical and radiological presentations of COVID-19-associated large- and medium-vessel pathology are heterogeneous and can be a late finding after COVID-19 recovery. Close clinical follow-up and surveillance imaging for large- and medium-sized-vessel pathology may be warranted in COVID-19 patients.

4.
Genome Med ; 14(1): 121, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36303210

ABSTRACT

BACKGROUND: Cancer recurrence after tumor resection in early-stage non-small cell lung cancer (NSCLC) is common, yet difficult to predict. The lung microbiota and systemic immunity may be important modulators of risk for lung cancer recurrence, yet biomarkers from the lung microbiome and peripheral immune environment are understudied. Such markers may hold promise for prediction as well as improved etiologic understanding of lung cancer recurrence. METHODS: In tumor and distant normal lung samples from 46 stage II NSCLC patients with curative resection (39 tumor samples, 41 normal lung samples), we conducted 16S rRNA gene sequencing. We also measured peripheral blood immune gene expression with nanoString®. We examined associations of lung microbiota and peripheral gene expression with recurrence-free survival (RFS) and disease-free survival (DFS) using 500 × 10-fold cross-validated elastic-net penalized Cox regression, and examined predictive accuracy using time-dependent receiver operating characteristic (ROC) curves. RESULTS: Over a median of 4.8 years of follow-up (range 0.2-12.2 years), 43% of patients experienced a recurrence, and 50% died. In normal lung tissue, a higher abundance of classes Bacteroidia and Clostridia, and orders Bacteroidales and Clostridiales, were associated with worse RFS, while a higher abundance of classes Alphaproteobacteria and Betaproteobacteria, and orders Burkholderiales and Neisseriales, were associated with better RFS. In tumor tissue, a higher abundance of orders Actinomycetales and Pseudomonadales were associated with worse DFS. Among these taxa, normal lung Clostridiales and Bacteroidales were also related to worse survival in a previous small pilot study and an additional independent validation cohort. In peripheral blood, higher expression of genes TAP1, TAPBP, CSF2RB, and IFITM2 were associated with better DFS. Analysis of ROC curves revealed that lung microbiome and peripheral gene expression biomarkers provided significant additional recurrence risk discrimination over standard demographic and clinical covariates, with microbiome biomarkers contributing more to short-term (1-year) prediction and gene biomarkers contributing to longer-term (2-5-year) prediction. CONCLUSIONS: We identified compelling biomarkers in under-explored data types, the lung microbiome, and peripheral blood gene expression, which may improve risk prediction of recurrence in early-stage NSCLC patients. These findings will require validation in a larger cohort.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Microbiota , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/genetics , Lung Neoplasms/surgery , Pilot Projects , RNA, Ribosomal, 16S/genetics , Neoplasm Staging , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Lung/pathology , Gene Expression , Prognosis , Membrane Proteins/genetics
5.
Front Oncol ; 12: 1014749, 2022.
Article in English | MEDLINE | ID: mdl-36303838

ABSTRACT

Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited therapeutic options. The extracellular matrix protein fibulin-3/EFEMP1 accumulates in the pleural effusions of MPM patients and has been proposed as a prognostic biomarker of these tumors. However, it is entirely unknown whether fibulin-3 plays a functional role on MPM growth and progression. Here, we demonstrate that fibulin-3 is upregulated in MPM tissue, promotes the malignant behavior of MPM cells, and can be targeted to reduce tumor progression. Overexpression of fibulin-3 increased the viability, clonogenic capacity and invasion of mesothelial cells, whereas fibulin-3 knockdown decreased these phenotypic traits as well as chemoresistance in MPM cells. At the molecular level, fibulin-3 activated PI3K/Akt signaling and increased the expression of a PI3K-dependent gene signature associated with cell adhesion, motility, and invasion. These pro-tumoral effects of fibulin-3 on MPM cells were disrupted by PI3K inhibition as well as by a novel, function-blocking, anti-fibulin-3 chimeric antibody. Anti-fibulin-3 antibody therapy tested in two orthotopic models of MPM inhibited fibulin-3 signaling, resulting in decreased tumor cell proliferation, reduced tumor growth, and extended animal survival. Taken together, these results demonstrate for the first time that fibulin-3 is not only a prognostic factor of MPM but also a relevant molecular target in these tumors. Further development of anti-fibulin-3 approaches are proposed to increase early detection and therapeutic impact against MPM.

6.
Clin Cancer Res ; 28(17): 3824-3835, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35802677

ABSTRACT

PURPOSE: Lung adenocarcinoma (LUAD) is a clinically heterogeneous disease, which is highlighted by the unpredictable recurrence in low-stage tumors and highly variable responses observed in patients treated with immunotherapies, which cannot be explained by mutational profiles. DNA methylation-based classification and understanding of microenviromental heterogeneity may allow stratification into clinically relevant molecular subtypes of LUADs. EXPERIMENTAL DESIGN: We characterize the genome-wide DNA methylation landscape of 88 resected LUAD tumors. Exome sequencing focusing on a panel of cancer-related genes was used to genotype these adenocarcinoma samples. Bioinformatic and statistical tools, the immune cell composition, DNA methylation age (DNAm age), and DNA methylation clustering were used to identify clinically relevant subgroups. RESULTS: Deconvolution of DNA methylation data identified immunologically hot and cold subsets of LUADs. In addition, concurrent factors were analyzed that could affect the immune microenvironment, such as smoking history, ethnicity, or presence of KRAS or TP53 mutations. When the DNAm age was calculated, a lower DNAm age was correlated with the presence of a set of oncogenic drivers, poor overall survival, and specific immune cell populations. Unsupervised DNA methylation clustering identified six molecular subgroups of LUAD tumors with distinct clinical and microenvironmental characteristics. CONCLUSIONS: Our results demonstrate that DNA methylation signatures can stratify LUAD into clinically relevant subtypes, and thus such classification of LUAD at the time of resection may lead to better methods in predicting tumor recurrence and therapy responses.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Adenocarcinoma/pathology , Adenocarcinoma of Lung/genetics , DNA Methylation , Humans , Lung Neoplasms/pathology , Mutation , Tumor Microenvironment
7.
Front Oncol ; 12: 902056, 2022.
Article in English | MEDLINE | ID: mdl-35707362

ABSTRACT

Objective: The timing and nature of surgical intervention for semisolid abnormalities are dependent upon distinguishing between adenocarcinoma-in-situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (INV). We sought to develop and evaluate a quantitative imaging method to determine invasiveness of small, ground-glass lesions on computed tomography (CT) chest scans. Methods: The study comprised 268 patients from 4 institutions with resected (<=3 cm) semisolid lesions with confirmed histopathological diagnosis of MIA/AIS or INV. A total of 248 radiomic texture features from within the tumor nodule (intratumoral) and adjacent to the nodule (peritumoral) were extracted from manually annotated lung nodules of chest CT scans. The datasets were randomly divided, with 40% of patients used for training and 60% used for testing the machine classifier (Training DTrain, N=106; Testing, DTest, N=162). Results: The top five radiomic stable features included four intratumoral (Laws and Haralick feature families) and one peritumoral feature within 3 to 6 mm of the nodule (CoLlAGe feature family), which successfully differentiated INV from MIA/AIS nodules with an AUC of 0.917 [0.867-0.967] on DTrain and 0.863 [0.79-0.931] on DTest. The radiomics model successfully differentiated INV from MIA cases (<1 cm AUC: 0.76 [0.53-0.98], 1-2 cm AUC: 0.92 [0.85-0.98], 2-3 cm AUC: 0.95 [0.88-1]). The final integrated model combining the classifier with the radiologists' score gave the best AUC on DTest (AUC=0.909, p<0.001). Conclusions: Addition of advanced image analysis via radiomics to the routine visual assessment of CT scans help better differentiate adenocarcinoma subtypes and can aid in clinical decision making. Further prospective validation in this direction is warranted.

8.
Front Oncol ; 12: 870143, 2022.
Article in English | MEDLINE | ID: mdl-35686111

ABSTRACT

Objectives: To investigate the efficacy and safety of lung stereotactic body radiation therapy (SBRT) for non-small cell lung cancer (NSCLC) including oligorecurrent and oligoprogressive disease. Methods: Single-institution retrospective analysis of 60 NSCLC patients with 62 discrete lesions treated with SBRT between 2008 and 2017. Patients were stratified into three groups, including early stage, locally recurrent, and oligoprogressive disease. Group 1 included early stage local disease with no prior local therapy. Group 2 included locally recurrent disease after local treatment of a primary lesion, and group 3 included regional or well-controlled distant metastatic disease receiving SBRT for a treatment naive lung lesion (oligoprogressive disease). Patient/tumor characteristics and adverse effects were recorded. Local failure free survival (LFFS), progression free survival (PFS), and overall survival (OS) were estimated using the Kaplan Meier method. Results: At median follow-up of 34 months, 67% of the study population remained alive. The estimated 3-year LFFS for group 1, group 2, and group 3 patients was 95% (95% CI: 86%-100%), 82%(62% - 100%), and 83% (58-100%), respectively. The estimated 3-year PFS was 59% (42-83%), 40% (21%-78%), and 33% (12%-95%), and the estimated 3-year OS was 58% (41-82%), 60% (37-96%), and 58% (31-100%)), respectively for each group. When adjusted for age and size of lesion, no significant difference in OS, LFFS, and PFS emerged between groups (p > 0.05). No patients experienced grade 3 to 5 toxicity. Eighteen patients (29%) experienced grade 1 to 2 toxicity. The most common toxicities reported were cough and fatigue. Conclusions: Our data demonstrates control rates in group 1 patients comparable to historical controls. Our study also reveals comparable clinical results for SBRT in the treatment of NSCLC by demonstrating similar rates of LFFS and OS in group 2 and group 3 patients with locally recurrent and treatment naïve lung lesion with well-controlled distant metastatic disease.

9.
N Engl J Med ; 386(20): 1889-1898, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35584156

ABSTRACT

BACKGROUND: Xenografts from genetically modified pigs have become one of the most promising solutions to the dearth of human organs available for transplantation. The challenge in this model has been hyperacute rejection. To avoid this, pigs have been bred with a knockout of the alpha-1,3-galactosyltransferase gene and with subcapsular autologous thymic tissue. METHODS: We transplanted kidneys from these genetically modified pigs into two brain-dead human recipients whose circulatory and respiratory activity was maintained on ventilators for the duration of the study. We performed serial biopsies and monitored the urine output and kinetic estimated glomerular filtration rate (eGFR) to assess renal function and xenograft rejection. RESULTS: The xenograft in both recipients began to make urine within moments after reperfusion. Over the 54-hour study, the kinetic eGFR increased from 23 ml per minute per 1.73 m2 of body-surface area before transplantation to 62 ml per minute per 1.73 m2 after transplantation in Recipient 1 and from 55 to 109 ml per minute per 1.73 m2 in Recipient 2. In both recipients, the creatinine level, which had been at a steady state, decreased after implantation of the xenograft, from 1.97 to 0.82 mg per deciliter in Recipient 1 and from 1.10 to 0.57 mg per deciliter in Recipient 2. The transplanted kidneys remained pink and well-perfused, continuing to make urine throughout the study. Biopsies that were performed at 6, 24, 48, and 54 hours revealed no signs of hyperacute or antibody-mediated rejection. Hourly urine output with the xenograft was more than double the output with the native kidneys. CONCLUSIONS: Genetically modified kidney xenografts from pigs remained viable and functioning in brain-dead human recipients for 54 hours, without signs of hyperacute rejection. (Funded by Lung Biotechnology.).


Subject(s)
Graft Rejection , Kidney Transplantation , Transplantation, Heterologous , Animals , Animals, Genetically Modified/surgery , Brain Death , Graft Rejection/etiology , Graft Rejection/pathology , Graft Rejection/prevention & control , Heterografts/transplantation , Humans , Kidney/pathology , Kidney/physiology , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Swine/surgery , Transplantation, Heterologous/adverse effects , Transplantation, Heterologous/methods
10.
J Thorac Oncol ; 17(7): 873-889, 2022 07.
Article in English | MEDLINE | ID: mdl-35462085

ABSTRACT

The most common malignancies that develop in carriers of BAP1 germline mutations include diffuse malignant mesothelioma, uveal and cutaneous melanoma, renal cell carcinoma, and less frequently, breast cancer, several types of skin carcinomas, and other tumor types. Mesotheliomas in these patients are significantly less aggressive, and patients require a multidisciplinary approach that involves genetic counseling, medical genetics, pathology, surgical, medical, and radiation oncology expertise. Some BAP1 carriers have asymptomatic mesothelioma that can be followed by close clinical observation without apparent adverse outcomes: they may survive many years without therapy. Others may grow aggressively but very often respond to therapy. Detecting BAP1 germline mutations has, therefore, substantial medical, social, and economic impact. Close monitoring of these patients and their relatives is expected to result in prolonged life expectancy, improved quality of life, and being cost-effective. The co-authors of this paper are those who have published the vast majority of cases of mesothelioma occurring in patients carrying inactivating germline BAP1 mutations and who have studied the families affected by the BAP1 cancer syndrome for many years. This paper reports our experience. It is intended to be a source of information for all physicians who care for patients carrying germline BAP1 mutations. We discuss the clinical presentation, diagnostic and treatment challenges, and our recommendations of how to best care for these patients and their family members, including the potential economic and psychosocial impact.


Subject(s)
Lung Neoplasms , Melanoma , Mesothelioma, Malignant , Mesothelioma , Skin Neoplasms , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/surgery , Melanoma/genetics , Mesothelioma/diagnosis , Mesothelioma/genetics , Mesothelioma/surgery , Quality of Life , Skin Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
11.
J Thorac Cardiovasc Surg ; 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35227497
12.
Precis Cancer Med ; 42021 Sep.
Article in English | MEDLINE | ID: mdl-35098108

ABSTRACT

OBJECTIVE: The aim of this review is addressing the mechanisms of asbestos carcinogenesis, including chronic inflammation and autophagy-mediated cell survival, and propose potential innovative therapeutic targets to prevent mesothelioma development or improve drug efficacy by reducing inflammation and autophagy. BACKGROUND: Diffuse malignant pleural mesothelioma is an aggressive cancer predominantly related to chronic inflammation caused by asbestos exposure. Millions of individuals have been exposed to asbestos or to other carcinogenic mineral fibers occupationally or environmentally, resulting in an increased risk of developing mesothelioma. Overall patient survival rates are notably low (about 8-14 months from the time of diagnosis) and mesothelioma is resistant to existing therapies. Additionally, individuals carrying inactivating germline mutations in the BRCA-associated protein 1 (BAP1) gene and other genes are predisposed to developing cancers, prevalently mesothelioma. Their risk of developing mesothelioma further increases upon exposure to asbestos. Recent studies have revealed the mechanisms and the role of inflammation in asbestos carcinogenesis. Biomarkers for asbestos exposure and malignant mesothelioma have also been identified. These findings are leading to the development of novel therapeutic approaches to prevent or delay the growth of mesothelioma. METHODS: Review of full length manuscripts published in English from January 1980 to February 2021 gathered from PubMed.gov from the National Center of Biotechnology Information and the National Library of Medicine were used to inform this review. CONCLUSION: Key regulators of chronic inflammation mediate asbestos-driven mesothelial cell transformation and survival through autophagic pathways. Recent studies have elucidated some of the key mechanisms involved in asbestos-induced chronic inflammation, which are largely driven by extracellular high mobility group box 1 (HMGB1). Upon asbestos exposure, mesothelial cells release HMGB1 from the nucleus to the cytoplasm and extracellular space, where HMGB1 initiates an inflammatory response. HMGB1 translocation and release also activates autophagy and other pro-survival mechanisms, which promotes mesothelioma development. HMGB1 is currently being investigated as a biomarker to detect asbestos exposure and to detect mesothelioma development in its early stage when therapy is more effective. In parallel, several approaches inhibiting HMGB1 activities have been studied and have shown promising results. Moreover, additional cytokines, such as IL-1ß and TNF-α are being targeted to interfere with the inflammatory process that drives mesothelioma growth. Developing early detection methods and novel therapeutic strategies is crucial to prolong overall survival of patients with mesothelioma. Novel therapies targeting regulators of asbestos-induced inflammation to reduce mesothelioma growth may lead to clinical advancements to benefit patients with mesothelioma.

13.
J Clin Oncol ; 40(6): 681-692, 2022 02 20.
Article in English | MEDLINE | ID: mdl-34985934

ABSTRACT

Malignant pleural mesothelioma (MPM) is a rare malignancy with few treatment options. Recent advances have led to US Food and Drug Administration approvals and changes in the standard of care with a novel biomedical device approved for use with platinum-pemetrexed, and also for immunotherapy agents to be included as a frontline treatment option in unresectable disease. Although predictive biomarkers for systemic therapy are not currently in use in clinical practice, it is essential to correctly identify the MPM histology to determine an optimal treatment plan. Patients with nonepithelioid MPM may have a greater magnitude of benefit to dual immunotherapy checkpoint inhibitors and this regimen should be preferred in the frontline setting for these patients. However, all patients with MPM can derive benefit from immunotherapy treatments, and these agents should ultimately be used at some point during their treatment journey. There are ongoing studies in the frontline unresectable setting that may further define the frontline therapy space, but a critical area of research will need to focus on the immunotherapy refractory population. This review article will describe the new developments in the areas of biology with genomics and chromothripsis, and also focus on updates in treatment strategies in radiology, surgery, radiation, and medical oncology with cellular therapies. These recent innovations are generating momentum to find better therapies for this disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunotherapy , Mesothelioma, Malignant/therapy , Pleural Neoplasms/therapy , Radiotherapy, Intensity-Modulated , Thoracic Surgical Procedures , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cell- and Tissue-Based Therapy , Chemotherapy, Adjuvant , Humans , Immunotherapy/adverse effects , Immunotherapy/mortality , Mesothelioma, Malignant/immunology , Mesothelioma, Malignant/mortality , Mesothelioma, Malignant/pathology , Pleural Neoplasms/immunology , Pleural Neoplasms/mortality , Pleural Neoplasms/pathology , Radiation Dosage , Radiotherapy, Adjuvant , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/mortality , Thoracic Surgical Procedures/adverse effects , Thoracic Surgical Procedures/mortality , Treatment Outcome
14.
J Clin Oncol ; 39(33): 3747-3758, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34591593

ABSTRACT

PURPOSE: Approximately 10%-40% of patients with lung cancer report no history of tobacco smoking (never-smokers). We analyzed whole-exome and RNA-sequencing data of 160 tumor and normal lung adenocarcinoma (LUAD) samples from never-smokers to identify clinically actionable alterations and gain insight into the environmental and hereditary risk factors for LUAD among never-smokers. METHODS: We performed whole-exome and RNA-sequencing of 88 and 69 never-smoker LUADs. We analyzed these data in conjunction with data from 76 never-smoker and 299 smoker LUAD samples sequenced by The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium. RESULTS: We observed a high prevalence of clinically actionable driver alterations in never-smoker LUADs compared with smoker LUADs (78%-92% v 49.5%; P < .0001). Although a subset of never-smoker samples demonstrated germline alterations in DNA repair genes, the frequency of samples showing germline variants in cancer predisposing genes was comparable between smokers and never-smokers (6.4% v 6.9%; P = .82). A subset of never-smoker samples (5.9%) showed mutation signatures that were suggestive of passive exposure to cigarette smoke. Finally, analysis of RNA-sequencing data showed distinct immune transcriptional subtypes of never-smoker LUADs that varied in their expression of clinically relevant immune checkpoint molecules and immune cell composition. CONCLUSION: In this comprehensive genomic and transcriptome analysis of never-smoker LUADs, we observed a potential role for germline variants in DNA repair genes and passive exposure to cigarette smoke in the pathogenesis of a subset of never-smoker LUADs. Our findings also show that clinically actionable driver alterations are highly prevalent in never-smoker LUADs, highlighting the need for obtaining biopsies with adequate cellularity for clinical genomic testing in these patients.


Subject(s)
Adenocarcinoma of Lung/pathology , Biomarkers, Tumor/genetics , Lung Neoplasms/pathology , Mutation , Smoking/trends , Adenocarcinoma of Lung/epidemiology , Adenocarcinoma of Lung/genetics , Aged , Female , Follow-Up Studies , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Male , Prognosis , United States/epidemiology
15.
Cell ; 185(1): 169-183.e19, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34963055

ABSTRACT

Non-small cell lung cancers (NSCLCs) harboring KEAP1 mutations are often resistant to immunotherapy. Here, we show that KEAP1 targets EMSY for ubiquitin-mediated degradation to regulate homologous recombination repair (HRR) and anti-tumor immunity. Loss of KEAP1 in NSCLC induces stabilization of EMSY, producing a BRCAness phenotype, i.e., HRR defects and sensitivity to PARP inhibitors. Defective HRR contributes to a high tumor mutational burden that, in turn, is expected to prompt an innate immune response. Notably, EMSY accumulation suppresses the type I interferon response and impairs innate immune signaling, fostering cancer immune evasion. Activation of the type I interferon response in the tumor microenvironment using a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of KEAP1-mutant tumors. Our results suggest that targeting PARP and STING pathways, individually or in combination, represents a therapeutic strategy in NSCLC patients harboring alterations in KEAP1.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Interferon Type I/metabolism , Lung Neoplasms/immunology , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Recombinational DNA Repair/genetics , Repressor Proteins/metabolism , Tumor Escape/genetics , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Female , HEK293 Cells , Humans , Immunity, Innate/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mutation , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Signal Transduction/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
16.
Clin Mass Spectrom ; 18: 13-26, 2020 Nov.
Article in English | MEDLINE | ID: mdl-34820522

ABSTRACT

INTRODUCTION: Most diseases involve a complex interplay between multiple biological processes at the cellular, tissue, organ, and systemic levels. Clinical tests and biomarkers based on the measurement of a single or few analytes may not be able to capture the complexity of a patient's disease. Novel approaches for comprehensively assessing biological processes from easily obtained samples could help in the monitoring, treatment, and understanding of many conditions. OBJECTIVES: We propose a method of creating scores associated with specific biological processes from mass spectral analysis of serum samples. METHODS: A score for a process of interest is created by: (i) identifying mass spectral features associated with the process using set enrichment analysis methods, and (ii) combining these features into a score using a principal component analysis-based approach. We investigate the creation of scores using cohorts of patients with non-small cell lung cancer, melanoma, and ovarian cancer. Since the circulating proteome is amenable to the study of immune responses, which play a critical role in cancer development and progression, we focus on functions related to the host response to disease. RESULTS: We demonstrate the feasibility of generating scores, their reproducibility, and their associations with clinical outcomes. Once the scores are constructed, only 3 µL of serum is required for the assessment of multiple biological functions from the circulating proteome. CONCLUSION: These mass spectrometry-based scores could be useful for future multivariate biomarker or test development studies for informing treatment, disease monitoring and improving understanding of the roles of various biological functions in multiple disease settings.

17.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34815344

ABSTRACT

Carriers of heterozygous germline BAP1 mutations (BAP1+/-) are affected by the "BAP1 cancer syndrome." Although they can develop almost any cancer type, they are unusually susceptible to asbestos carcinogenesis and mesothelioma. Here we investigate why among all carcinogens, BAP1 mutations cooperate with asbestos. Asbestos carcinogenesis and mesothelioma have been linked to a chronic inflammatory process promoted by the extracellular release of the high-mobility group box 1 protein (HMGB1). We report that BAP1+/- cells secrete increased amounts of HMGB1, and that BAP1+/- carriers have detectable serum levels of acetylated HMGB1 that further increase when they develop mesothelioma. We linked these findings to our discovery that BAP1 forms a trimeric protein complex with HMGB1 and with histone deacetylase 1 (HDAC1) that modulates HMGB1 acetylation and its release. Reduced BAP1 levels caused increased ubiquitylation and degradation of HDAC1, leading to increased acetylation of HMGB1 and its active secretion that in turn promoted mesothelial cell transformation.


Subject(s)
Asbestos , HMGB1 Protein/chemistry , Histone Deacetylase 1/chemistry , Tumor Suppressor Proteins/chemistry , Ubiquitin Thiolesterase/chemistry , Animals , Biomarkers, Tumor/metabolism , Carcinogenesis , Cell Nucleus/metabolism , Female , Gene-Environment Interaction , Germ-Line Mutation , HMGB1 Protein/genetics , Heterozygote , Histone Deacetylase 1/genetics , Incidence , Inflammation , Male , Mesothelioma/metabolism , Mice , Mutation , Prognosis , Protein Binding , Tumor Suppressor Proteins/metabolism , Ubiquitin/chemistry , Ubiquitin Thiolesterase/metabolism
18.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769499

ABSTRACT

Chemoresistance is a hallmark of malignant pleural mesothelioma (MPM) management and the expression of ALDH1A3 is responsible for the survival and activity of MPM chemoresistant cell subpopulations (ALDHbright cells). We enriched mesothelioma ALDHbright cells to near homogeneity by FACS sorting and an Aldefluor assay and performed unbiased Affymetrix gene expression profiling. Viability and ELISA assays were used to rule out significant apoptosis in the sorted cell subpopulations and to assess target engagement by butein. Statistical analysis of the results, pathway enrichment and promoter enrichment were employed for the generation of the data. Q-RTPCR was used to validate a subset of the identified, modulated mRNAs In this work, we started from the observation that the mRNA levels of the ALDH1A3 isoform could prognostically stratify MPM patients. Thus, we purified MPM ALDHbright cells from NCI-H2595 cells and interrogated their gene expression (GES) profile. We analyzed the GES of the purified cells at both a steady state and upon treatment with butein (a multifunctional tetrahydroxy-chalcone), which abates the ALDHbright cell number, thereby exerting chemo-sensitizing effects in vitro and in vivo. We identified 924 genes modulated in a statistically significant manner as a function of ALDH status and of the response to the inhibitor. Pathway and promoter enrichment identified the molecular determinant of high ALDH status and how butein treatment altered the molecular portrait of those chemoresistant cell subpopulations. Further, we unraveled an eighteen-gene signature with high prognostic significance for MPM patients, and showed that most of the identified prognostic contributors escaped the analysis of unfractionated samples. This work proves that digging into the unexplored field of intra-tumor heterogeneity (ITH) by working at the cell subpopulation level may provide findings of prognostic relevance, in addition to mechanistic insights into tumor resistance to therapy.


Subject(s)
Aldehyde Oxidoreductases/metabolism , DNA Repair , Mesothelioma, Malignant/pathology , NF-kappa B/metabolism , Cell Line, Tumor , Clonal Evolution , Drug Resistance, Neoplasm , Flow Cytometry/methods , Humans , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/metabolism , Prognosis , Survival Rate
19.
J Exp Clin Cancer Res ; 40(1): 344, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34727953

ABSTRACT

Background High resistance to therapy and poor prognosis characterizes malignant pleural mesothelioma (MPM). In fact, the current lines of treatment, based on platinum and pemetrexed, have limited impact on the survival of MPM patients. Adaptive response to therapy-induced stress involves complex rearrangements of the MPM secretome, mediated by the acquisition of a senescence-associated-secretory-phenotype (SASP). This fuels the emergence of chemoresistant cell subpopulations, with specific gene expression traits and protumorigenic features. The SASP-driven rearrangement of MPM secretome takes days to weeks to occur. Thus, we have searched for early mediators of such adaptive process and focused on metabolites differentially released in mesothelioma vs mesothelial cell culture media, after treatment with pemetrexed. METHODS: Mass spectrometry-based (LC/MS and GC/MS) identification of extracellular metabolites and unbiased statistical analysis were performed on the spent media of mesothelial and mesothelioma cell lines, at steady state and after a pulse with pharmacologically relevant doses of the drug. ELISA based evaluation of arachidonic acid (AA) levels and enzyme inhibition assays were used to explore the role of cPLA2 in AA release and that of LOX/COX-mediated processing of AA. QRT-PCR, flow cytometry analysis of ALDH expressing cells and 3D spheroid growth assays were employed to assess the role of AA at mediating chemoresistance features of MPM. ELISA based detection of p65 and IkBalpha were used to interrogate the NFkB pathway activation in AA-treated cells. RESULTS: We first validated what is known or expected from the mechanism of action of the antifolate. Further, we found increased levels of PUFAs and, more specifically, arachidonic acid (AA), in the transformed cell lines treated with pemetrexed. We showed that pharmacologically relevant doses of AA tightly recapitulated the rearrangement of cell subpopulations and the gene expression changes happening in pemetrexed -treated cultures and related to chemoresistance. Further, we showed that release of AA following pemetrexed treatment was due to cPLA2 and that AA signaling impinged on NFkB activation and largely affected anchorage-independent, 3D growth and the resistance of the MPM 3D cultures to the drug. CONCLUSIONS: AA is an early mediator of the adaptive response to pem in chemoresistant MPM and, possibly, other malignancies.


Subject(s)
Antineoplastic Agents/adverse effects , Arachidonic Acid/therapeutic use , Mass Spectrometry/methods , Mesothelioma, Malignant/drug therapy , Stress, Physiological/drug effects , Arachidonic Acid/pharmacology , Female , Humans , Male
20.
Mod Pathol ; 35(2): 210-217, 2022 02.
Article in English | MEDLINE | ID: mdl-34326485

ABSTRACT

Spread through air spaces (STAS) is reportedly associated with worse prognosis in sublobar resections of lung adenocarcinoma. Recently, it was proposed that STAS detected on frozen sections can be an indication for lobectomy instead of sublobar resection. We undertook this study to evaluate the reliability of STAS assessment on frozen sections compared to permanent sections, as well as the associations among STAS, tumor grade, and recurrence-free survival (RFS) after sublobar resection. A total of 163 stage I lung adenocarcinoma resections with frozen sections were identified retrospectively. For each case, and for frozen and permanent sections separately, the presence or absence of STAS, as well as the tumor grade, were recorded. Compared to permanent sections, STAS detection on frozen sections had low sensitivity (55%), low positive predictive value (48%), and fair agreement (K = 0.34), whereas there was higher specificity (80%) and negative predictive value (85%). Accuracy was 74%. Tumor grade assessment on frozen sections showed higher sensitivity (77%), positive predictive value (90%), agreement (K = 0.72), specificity (94%), and accuracy (87%), and the same negative predictive value (85%). High-grade histology on frozen sections was associated with shorter RFS (p = 0.02), whereas STAS on frozen sections was not (p = 0.47). Our results suggest that the intraoperative detection of STAS has low sensitivity and positive predictive value. False-positive results may lead to overtreatment of patients with lung cancer. The determination of tumor grade on frozen sections offers better sensitivity and specificity, plus it is associated with RFS, whereas STAS on frozen sections is not. Further study is needed to explore the utility of assessing tumor grade on frozen sections.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Feasibility Studies , Frozen Sections , Humans , Imidazoles , Lung Neoplasms/pathology , Neoplasm Invasiveness/pathology , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prognosis , Reproducibility of Results , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL