Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
J Infect Dis ; 2021 Dec 11.
Article in English | MEDLINE | ID: covidwho-1566024


Co-circulation of SARS-CoV-2 and influenza viruses could pose unpredictable risks to health systems globally, with recent studies suggesting more severe disease outcomes in co-infected patients. The initial lack of a readily available COVID-19 vaccine has reinforced the importance of influenza vaccine programmes during the COVID-19 pandemic. Live Attenuated Influenza Vaccine (LAIV) is an important tool in protecting against influenza, particularly in children. However, it is unknown whether LAIV administration influences the outcomes of acute SARS-CoV-2 infection or disease. To investigate this, quadrivalent LAIV was administered to ferrets 3 days pre- or post-SARS-CoV-2 infection. LAIV administration did not exacerbate SARS-CoV-2 disease course or lung pathology with either regimen. Additionally, LAIV administered prior to SARS-CoV-2 infection significantly reduced SARS-CoV-2 replication and shedding in the upper respiratory tract. This study demonstrated that LAIV administration in close proximity to SARS-CoV-2 infection does not exacerbate mild disease and can reduce SARS-CoV-2 shedding.

Mol Ther ; 2021 Sep 20.
Article in English | MEDLINE | ID: covidwho-1450246


The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.

Nat Commun ; 12(1): 1260, 2021 02 24.
Article in English | MEDLINE | ID: covidwho-1101645


A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.

COVID-19/immunology , COVID-19/virology , Lung/pathology , Lung/virology , Animals , Disease Models, Animal , Female , Immunity, Cellular/physiology , Interferon-gamma/metabolism , Macaca fascicularis , Macaca mulatta , Male , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
Nat Commun ; 12(1): 81, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1007628


There is a vital need for authentic COVID-19 animal models to enable the pre-clinical evaluation of candidate vaccines and therapeutics. Here we report a dose titration study of SARS-CoV-2 in the ferret model. After a high (5 × 106 pfu) and medium (5 × 104 pfu) dose of virus is delivered, intranasally, viral RNA shedding in the upper respiratory tract (URT) is observed in 6/6 animals, however, only 1/6 ferrets show similar signs after low dose (5 × 102 pfu) challenge. Following sequential culls pathological signs of mild multifocal bronchopneumonia in approximately 5-15% of the lung is seen on day 3, in high and medium dosed groups. Ferrets re-challenged, after virus shedding ceased, are fully protected from acute lung pathology. The endpoints of URT viral RNA replication & distinct lung pathology are observed most consistently in the high dose group. This ferret model of SARS-CoV-2 infection presents a mild clinical disease.

COVID-19/immunology , Disease Models, Animal , Ferrets/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Dose-Response Relationship, Drug , Female , Lung/immunology , Lung/pathology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Virus Replication/drug effects , Virus Replication/immunology , Virus Shedding/drug effects , Virus Shedding/immunology