Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Bangladesh Journal of Veterinary Medicine ; 20(1):17-24, 2022.
Article in English | CAB Abstracts | ID: covidwho-2026591

ABSTRACT

Background: Poultry and livestock are a leading sub-sector of agriculture, playing an important role to fulfill the protein requirements of the human diet and contributing to the national economy in Bangladesh. This sub-sector is often vulnerable due to frequent outbreaks of diseases in animals and unrest situations worldwide that hamper earning a profit up to the expected mark. Due to pandemic COVID-19, the Bangladesh government was bound to announce a countrywide lockdown and periodical restriction of movement in March 2020 to minimize the spread of the infection. This study aimed to evaluate the impact of COVID-19 on poultry and livestock health.

2.
Natural Product Communications ; 16(10), 2021.
Article in English | EMBASE | ID: covidwho-1457891

ABSTRACT

Among the large number of plants that are part of the Ayurvedic system of medicine in India and Bangladesh, Zingiber officinale Roscoe (Zingiberaceae), or ginger in English, holds a special place and is often referred to as “Mahaushadha” (great medicine) and “Vishvabhesaja” (worldwide or universal herb) to signify its special status. The plant and particularly its rhizomes are used both in the raw and dry form for the relief of a multitude of disorders. Since a number of these disorders occur in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it was of interest to perform in silico studies (molecular docking) to evaluate the binding affinities of a number of constituents of Zingiber officinale with the 3C-like protease or main protease (Mpro) of SARS-CoV-2, which plays an essential role in the cleavage of viral polyproteins and subsequent viral replication. Our studies indicated that 2 of the compounds present in ginger, namely, chlorogenic acid and hesperidin, had high binding affinities for Mpro with predicted binding energies of −7.5 and −8.3 kcal/mol. The two-dimensional and three-dimensional interactions also showed that, while chlorogenic acid interacts with one of the His41 amino acids of the catalytic dyad of Mpro, hesperidin interacts with the other amino acid Cys145, which can account for their predicted high binding energies and, therefore, possibly can inhibit Mpro activity. Taken together, our findings indicate that ginger, besides alleviating the symptoms induced by SARS-CoV-2, may also play a role in inhibiting the virus.

3.
Trop Biomed ; 38(3): 360-365, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1404405

ABSTRACT

COVID-19, caused by the SARS-CoV-2 virus, can lead to massive inflammation in the gastrointestinal tract causing severe clinical symptoms. SARS-CoV-2 infects lungs after binding its spike proteins with alveolar angiotensin-converting enzyme 2 (ACE2), and it also triggers inflammation in the gastrointestinal tract. SARS-CoV-2 invades the gastrointestinal tract by interacting with Toll-like receptor-4 (TLR4) that induces the expression of ACE2. The influx of ACE2 facilitates cellular binding of more SARS-CoV-2 and causes massive gastrointestinal inflammation leading to diarrhea. Diarrhea prior to COVID-19 infection or COVID-19-induced diarrhea reportedly ends up in a poor prognosis for the patient. Flavonoids are part of traditional remedies for gastrointestinal disorders. Preclinical studies show that flavonoids can prevent infectious diarrhea. Recent studies show flavonoids can inhibit the multiplication of SARS-CoV-2. In combination with vitamin D, flavonoids possibly activate nuclear factor erythroid-derived-2-related factor 2 that downregulates ACE2 expression in cells. We suggest that flavonoids have the potential to prevent SARS-CoV-2 induced diarrhea.


Subject(s)
COVID-19/complications , Diarrhea/prevention & control , Flavonoids/therapeutic use , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/physiology , Diarrhea/etiology , Humans
4.
Mathematical Engineering ; : 39-60, 2021.
Article in English | Scopus | ID: covidwho-1184623

ABSTRACT

The present world is in dire straits due to the deadly SARS coronavirus-2 (CoV-2) outbreak, and the experts are trying heart and soul to discover any prevention and/or remedy. The people from all walks of life in the universe are fighting to defeat this novel coronavirus. In this case, doctors are in the front line fighters who have put themselves at a risk. In this paper, we have formulated a non-linear system of five differential equations of COVID-19 based on the tendency of doctors to be infected. The target of this study is to take a look at the transmission of COVID-19 from asymptomatic populations to the doctors. The model is analyzed with the determination of the basic reproduction number, equilibrium, and related stability analysis at both equilibrium points. The graph of the basic reproductive ratio for different parameters has been drawn to show the disease behavior. Finally, we have simulated our model numerically for visualizing the analytical findings. Our study shows that the asymptomatic population increases as the disease (COVID-19) transmission rate increases. The number of infected population increases with the infection rate. These increasing asymptomatic and infected populations lead the doctors to get infected by contacting with them. Thus, the whole medical service system is getting down over time. © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

5.
Natural Product Communications ; 16(2):1, 2021.
Article in English | Web of Science | ID: covidwho-1143107
6.
CMES - Computer Modeling in Engineering and Sciences ; 125(3):1033-1060, 2020.
Article in English | Scopus | ID: covidwho-1000912

ABSTRACT

COVID-19 is one of the most highly infectious diseases ever emerged and caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has already led the entire world to health and economic crisis. It has invaded the whole universe all most every way. The present study demonstrates with a nine mutually exclusive compartmental model on transmission dynamics of this pandemic disease (COVID-19), with special focus on the transmissibility of symptomatic and asymptomatic infection from susceptible individuals. Herein, the compartmental model has been investigated with mathematical analysis and computer simulations in order to understand the dynamics of COVID-19 transmission. Initially, mathematical analysis of the model has been carried out in broadly by illustrating some well-known methods including exactness, equilibrium and stability analysis in terms of basic reproduction number. We investigate the sensitivity of the model with respect to the variation of the parameters' values. Furthermore, computer simulations are performed to illustrate the results. Our analysis reveals that the death rate from coronavirus disease increases as the infection rate increases, whereas infection rate extensively decreases with the increase of quarantined individuals. The quarantined individuals also lead to increase the concentration of recovered individuals. However, the infection rate of COVID-19 increases more surprisingly as the rate of asymptomatic individuals increases than that of the symptomatic individuals. Moreover, the infection rate decreases significantly due to increase of self-immunity rate. © 2020 Tech Science Press. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL