Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Type of study
Language
Document Type
Year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20177667

ABSTRACT

There is increasing interest to use wastewater-based surveillance of SARS-CoV-2 as an early warning of the outbreak within a community. Despite successful detection of SARS-CoV-2 in wastewaters sampled from multiple locations, there is still no clear idea on the minimal number of cases needed in a community to result in a positive detection of the virus in wastewaters. To address this knowledge gap, we sampled wastewaters from a septic tank and biological activated sludge tank located on-site of a hospital. The hospital is providing treatment for SARS-CoV-2 infected patients, with the number of hospitalized patients per day known. It was observed that > 253 positive cases out of 10,000 persons are required prior to detecting SARS-CoV-2 in wastewater. There was a weak correlation between N1 and N2 gene abundances in wastewater with the number of hospitalized cases. This correlation was however not observed for N3 gene. The occurrence frequency of SARS-CoV-2 is at least 5 times lower in the partially treated wastewater than in the septic tank. Furthermore, abundance of N1 and N3 genes in the activated sludge tank were 50 and 70% of the levels detected in septic tank, suggesting poor persistence of the SARS-CoV-2 gene fragments in wastewater. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=115 SRC="FIGDIR/small/20177667v1_ufig1.gif" ALT="Figure 1"> View larger version (28K): org.highwire.dtl.DTLVardef@3c868eorg.highwire.dtl.DTLVardef@1a5ec59org.highwire.dtl.DTLVardef@3fcafborg.highwire.dtl.DTLVardef@273440_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20141945

ABSTRACT

Diagnosis and surveillance of emerging pathogens such as SARS-CoV-2 depend on nucleic acid isolation from clinical and environmental samples. Under normal circumstances, samples would be processed using commercial proprietary reagents in Biosafety 2 (BSL-2) or higher facilities. A pandemic at the scale of COVID-19 has caused a global shortage of proprietary reagents and BSL-2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. We developed an open-source method called Magnetic-nanoparticle-Aided Viral RNA Isolation of Contagious Samples (MAVRICS) that is built upon reagents that are either readily available or can be synthesized in any molecular biology laboratory with basic equipment. Unlike conventional methods, MAVRICS works directly in samples inactivated in acid guanidinium thiocyanate-phenol-chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. Using 36 COVID-19 patient samples, 2 wastewater samples and 1 human pathogens control sample, we showed that MAVRICS rivals commercial kits in validated diagnostic tests of SARS-CoV-2, influenza viruses, and respiratory syncytial virus. MAVRICS is scalable and thus could become an enabling technology for widespread community testing and wastewater monitoring in the current and future pandemics.

SELECTION OF CITATIONS
SEARCH DETAIL