Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Front Immunol ; 12: 695242, 2021.
Article in English | MEDLINE | ID: covidwho-1282388


The COVID-19 pandemic has reached direct and indirect medical and social consequences with a subset of patients who rapidly worsen and die from severe-critical manifestations. As a result, there is still an urgent need to identify prognostic biomarkers and effective therapeutic approaches. Severe-critical manifestations of COVID-19 are caused by a dysregulated immune response. Immune checkpoint molecules such as Programmed death-1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1) play an important role in regulating the host immune response and several lines of evidence underly the role of PD-1 modulation in COVID-19. Here, by analyzing blood sample collection from both hospitalized COVID-19 patients and healthy donors, as well as levels of PD-L1 RNA expression in a variety of model systems of SARS-CoV-2, including in vitro tissue cultures, ex-vivo infections of primary epithelial cells and biological samples obtained from tissue biopsies and blood sample collection of COVID-19 and healthy individuals, we demonstrate that serum levels of PD-L1 have a prognostic role in COVID-19 patients and that PD-L1 dysregulation is associated to COVID-19 pathogenesis. Specifically, PD-L1 upregulation is induced by SARS-CoV-2 in infected epithelial cells and is dysregulated in several types of immune cells of COVID-19 patients including monocytes, neutrophils, gamma delta T cells and CD4+ T cells. These results have clinical significance since highlighted the potential role of PD-1/PD-L1 axis in COVID-19, suggest a prognostic role of PD-L1 and provide a further rationale to implement novel clinical studies in COVID-19 patients with PD-1/PD-L1 inhibitors.

B7-H1 Antigen/metabolism , COVID-19/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/pathology , Epithelial Cells/metabolism , Female , Humans , Leukocytes, Mononuclear/metabolism , Lung/metabolism , Lung/pathology , Male , Middle Aged , Prognosis , SARS-CoV-2 , Up-Regulation
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: covidwho-1050618


The aim of this review is to highlight the influence of the Mediterranean Diet (MedDiet) on Gestational Diabetes Mellitus (GDM) and Gestational Weight Gain (GWG) during the COVID-19 pandemic era and the specific role of interleukin (IL)-6 in diabesity. It is known that diabetes, high body mass index, high glycated hemoglobin and raised serum IL-6 levels are predictive of poor outcomes in coronavirus disease 2019 (COVID-19). The immunopathological mechanisms of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection include rising levels of several cytokines and in particular IL-6. The latter is associated with hyperglycemia and insulin resistance and could be useful for predicting the development of GDM. Rich in omega-3 polyunsaturated fatty acids, vitamins, and minerals, MedDiet improves the immune system and could modulate IL-6, C reactive protein and Nuclear Factor (NF)-κB. Moreover, polyphenols could modulate microbiota composition, inhibit the NF-κB pathway, lower IL-6, and upregulate antioxidant enzymes. Finally, adhering to the MedDiet prior to and during pregnancy could have a protective effect, reducing GWG and the risk of GDM, as well as improving the immune response to viral infections such as COVID-19.

COVID-19/blood , Diabetes, Gestational/prevention & control , Diet, Mediterranean , Interleukin-6/blood , Animals , COVID-19/epidemiology , Diabetes, Gestational/blood , Diabetes, Gestational/epidemiology , Female , Gestational Weight Gain , Humans , Life Style , Obesity/blood , Obesity/epidemiology , Obesity/prevention & control , Pregnancy