ABSTRACT
BACKGROUND: Identifying a specific threshold level of SARS-CoV-2 antibodies that confers protection in immunocompromised patients has been very challenging. The aim was to assess the threshold of 264 binding antibody units (BAU)/ml using four different SARS-CoV-2 antibody assays (Abbott, Beckman, Roche, and Siemens) and to establish a new optimal threshold of protection for each of the four antibody assays. METHODS: This study was performed on data retrieved from 69 individuals, who received at least one dose of the Pfizer/BioNTech BNT162b2 or Moderna COVID-19 vaccine (Spikevax) at the Alphabio Laboratory in Marseille, France (European Hospital, Alphabio-Biogroup). The results were compared to the percent inhibition calculated using a functional surrogate of a standardized virus neutralization test (Genscript). RESULTS: Samples from 69 patients were analyzed. For a reference cutoff of 264 BAU/ml, assays showed moderate to good overall concordance with Genscript: 87% concordance for Abbott, 78% for Beckman, 75% for Roche, and 88% for Siemens. Overall concordance increased consistently after applying new thresholds, i.e., 148 BAU/ml (Abbott), 48 (Beckman), 559 (Roche), and 270 (Siemens). CONCLUSION: We suggest specific adjusted thresholds (BAU/ml) for the four commercial antibody assays that are used to assess pre-exposure prophylaxis in immunocompromised patients.
Subject(s)
COVID-19 , Spiders , Humans , Animals , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , Antibodies, Viral , Immunocompromised HostABSTRACT
To determine the effect of the awake prone position (APP) on gas exchange and the work of breathing in spontaneously breathing patients with COVID-19-associated acute hypoxemic respiratory failure (AHRF) supported by high-flow nasal oxygen. DESIGN: Prospective randomized physiologic crossover multicenter trial. SETTINGS: Four ICUs in Marseille, France. PATIENTS: Seventeen patients with laboratory-confirmed COVID-19 pneumonia and Pao2/Fio2 less than or equal to 300 mm Hg while treated with high-flow nasal cannula oxygen therapy. INTERVENTIONS: Periods of APP and semirecumbent position (SRP) were randomly applied for 2 hours and separated by a 2-hour washout period. MEASUREMENTS AND MAIN RESULTS: Arterial blood gases, end-tidal CO2. and esophageal pressure were recorded prior to and at the end of each period. Inspiratory muscle effort was assessed by measuring the esophageal pressure swing (∆PES) and the simplified esophageal pressure-time product (sPTPES). The other endpoints included physiologic dead space to tidal volume ratio (VD/VT) and the transpulmonary pressure swing. The APP increased the Pao2/Fio2 from 84 Torr (61-137 Torr) to 208 Torr (114-226 Torr) (p = 0.0007) and decreased both the VD/VT and the respiratory rate from 0.54 (0.47-0.57) to 0.49 (0.45-0.53) (p = 0.012) and from 26 breaths/min (21-30 breaths/min) to 21 breaths/min (19-22 breaths/min), respectively (p = 0.002). These variables remained unchanged during the SRP. The ∆PES and sPTPES per breath were unaffected by the position. However, the APP reduced the sPTPES per minute from 225 cm H2O.s.m-1 (176-332 cm H2O.s.m-1) to 174 cm H2O.s.m-1 (161-254 cm H2O.s.m-1) (p = 0.049). CONCLUSIONS: In spontaneously breathing patients with COVID-19-associated AHRF supported by high-flow nasal oxygen, the APP improves oxygenation and reduces the physiologic dead space, respiratory rate, and work of breathing per minute.
ABSTRACT
To identify COVID-19-associated immunophenotyping patterns at hospital admission and to determine if some patterns could predict the need for mechanical ventilation (MV). DESIGN: Prospective observational monocentric cohort study. SETTING: A university-affiliated hospital in Marseille, France. PATIENTS: Thirty patients presenting with laboratory-confirmed COVID-19 pneumonia were enrolled within the first 48 hours of hospital admission and compared with 18 healthy controls. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Whole-blood leukocytes were immunophenotyped with a rapid and simplified one-step flow cytometry method. Thirty-eight immune and five laboratory parameters were compared first between COVID-19 patients and controls and then between the COVID-19 patients who received or not MV during their stays. The variables that significantly discriminated MV from non-MV patients in univariate analysis were entered into a multiple stepwise logistic regression analysis. The COVID-19 patients were predominantly male (87%), aged 61 years (50-71 yr), and 93% received early corticosteroid therapy. Sixteen patients (53%) were managed with noninvasive respiratory support, and 14 (47%) required MV. Compared with controls, COVID-19 patients were characterized by an immune signature featuring: 1) decreased HLA-DR expression on monocytes; 2) reduced basophils, eosinophils, T-cells, NK cells, and nonclassical monocyte count; and 3) up regulation of CD169 on monocytes, CD64 on neutrophils, the adhesion/migration markers (CD62L and CD11b), and the checkpoint inhibitor CD274 on myeloid cells. Among the COVID-19 patients, those who received MV had lower level of CD4 and HLA-DR on monocytes, lower CD8+ T-cell count, and higher lactate dehydrogenase at hospital admission. In multivariate analysis, only CD4 on monocytes (p = 0.032) and CD8+ T-cell count (p = 0.026) were associated with MV requirement. The model combining these two variables provided an area under curve of 0.97 (95% CI, 0.83-0.99). CONCLUSIONS: The association of low CD4 on monocytes and low CD8+ T-cell count at hospital admission was highly predictive of the need for MV in hospitalized patients with COVID-19 pneumonia.
ABSTRACT
BACKGROUND & AIM: We investigated the combination of rapid antigen detection (RAD) and RT-qPCR assays in a stepwise procedure to optimize the detection of COVID-19. METHODS: From August 2020 to November 2020, 43,399 patients were screened in our laboratory for COVID-19 diagnostic by RT-qPCR using nasopharyngeal swab. Overall, 4,691 of the 43,399 were found to be positive, and 200 were retrieved for RAD testing allowing comparison of diagnostic accuracy between RAD and RT-qPCR. Cycle threshold (Ct) and time from symptoms onset (TSO) were included as covariates. RESULTS: The overall sensitivity, specificity, PPV, NPV, LR-, and LR+ of RAD compared with RT-qPCR were 72% (95%CI 62%-81%), 99% (95% CI95%-100%), 99% (95%CI 93%-100%), and 78% (95%CI 70%-85%), 0.28 (95%CI 0.21-0.39), and 72 (95%CI 10-208) respectively. Sensitivity was higher for patients with Ct ≤ 25 regardless of TSO: TSO ≤ 4 days 92% (95%CI 75%-99%), TSO > 4 days 100% (95%CI 54%-100%), and asymptomatic 100% (95%CI 78-100%). Overall, combining RAD and RT-qPCR would allow reducing from only 4% the number of RT-qPCR needed. CONCLUSIONS: This study highlights the risk of misdiagnosing COVID-19 in 28% of patients if RAD is used alone. A stepwise analysis that combines RAD and RT-qPCR would be an efficient screening procedure for COVID-19 detection and may facilitate the control of the outbreak.