Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1824584


Objectives Attenuated humoral response to mRNA SARS-CoV-2 vaccines has been reported in some patients with autoimmune disease, e.g., rheumatoid arthritis (RA). However, data of immune responses to inactivated SARS-CoV-2 vaccine in the RA population are still unknown. Herein, the safety and immunogenicity of inactivated SARS-CoV-2 vaccines in RA patients were analyzed. Methods Seventy five RA patients and 26 healthy controls (HC) were respectively recruited from Yunnan Provincial Hospital of Traditional Chinese Medicine and the community in Kunming city. Neutralizing Antibody (NAb) Test ELISA kit was used to measure the percentage of inhibition. AKA (anti-keratin antibody) positivity was detected using indirect immunofluorescence. Rheumatoid factor (RF)-IgA was detected by ELISA. RF-IgG, RF-IgM, and anti-cyclic citrullinated peptide (CCP) antibodies were measured by chemiluminescence. ESR (erythrocyte sedimentation rate) was detected by ESR analyzer. C-RP (c-reactive protein) was detected by immunoturbidimetry. NEUT% (percentage of neutrophils) and LYMPH% (percentage of percentage) were calculated by a calculation method. Results Compared with the HC group, the percentage of inhibition was significantly lower in RA patients receiving two doses of vaccines. Vaccines-induced percentage of inhibition was the lowest in RA patients who had not been vaccinated. In total 80.77% of the HC group had a percentage of inhibition ≧20%, compared with 45.24% of vaccinated RA patients and 6.06% of unvaccinated RA patients. Spearman correlation analysis revealed that antibody responses to SARS-CoV-2 did not differ between RA patients according to their age and disease duration. Furthermore, the results showed that no correlation was found between the percentage of inhibition and indices for RA, including RF-IgA, IgG, IgM;anti-CCP antibody;ESR;C-RP;NEUT% and LYMPH%. Conclusion Our study showed inactivated vaccine-induced SARS-COV-2 antibody responses differ in RA patients and healthy subjects, emphasizing the importance of a third or fourth vaccination in RA patients.

Signal Transduct Target Ther ; 6(1): 427, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1795805


Abnormal glucose and lipid metabolism in COVID-19 patients were recently reported with unclear mechanism. In this study, we retrospectively investigated a cohort of COVID-19 patients without pre-existing metabolic-related diseases, and found new-onset insulin resistance, hyperglycemia, and decreased HDL-C in these patients. Mechanistically, SARS-CoV-2 infection increased the expression of RE1-silencing transcription factor (REST), which modulated the expression of secreted metabolic factors including myeloperoxidase, apelin, and myostatin at the transcriptional level, resulting in the perturbation of glucose and lipid metabolism. Furthermore, several lipids, including (±)5-HETE, (±)12-HETE, propionic acid, and isobutyric acid were identified as the potential biomarkers of COVID-19-induced metabolic dysregulation, especially in insulin resistance. Taken together, our study revealed insulin resistance as the direct cause of hyperglycemia upon COVID-19, and further illustrated the underlying mechanisms, providing potential therapeutic targets for COVID-19-induced metabolic complications.

COVID-19/blood , Hyperglycemia/blood , Insulin Resistance , Lipid Metabolism , Lipids/blood , SARS-CoV-2/metabolism , Adult , Aged , Biomarkers/blood , COVID-19/complications , Female , Humans , Hyperglycemia/etiology , Male , Middle Aged , Retrospective Studies
Cell Metab ; 34(3): 424-440.e7, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1676683


Coronavirus disease 2019 (COVID-19) represents a systemic disease that may cause severe metabolic complications in multiple tissues including liver, kidney, and cardiovascular system. However, the underlying mechanisms and optimal treatment remain elusive. Our study shows that impairment of ACE2 pathway is a key factor linking virus infection to its secondary metabolic sequelae. By using structure-based high-throughput virtual screening and connectivity map database, followed with experimental validations, we identify imatinib, methazolamide, and harpagoside as direct enzymatic activators of ACE2. Imatinib and methazolamide remarkably improve metabolic perturbations in vivo in an ACE2-dependent manner under the insulin-resistant state and SARS-CoV-2-infected state. Moreover, viral entry is directly inhibited by these three compounds due to allosteric inhibition of ACE2 binding to spike protein on SARS-CoV-2. Taken together, our study shows that enzymatic activation of ACE2 via imatinib, methazolamide, or harpagoside may be a conceptually new strategy to treat metabolic sequelae of COVID-19.

COVID-19/drug therapy , Imatinib Mesylate/therapeutic use , Metabolic Diseases/drug therapy , Methazolamide/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Down-Regulation/drug effects , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Imatinib Mesylate/pharmacology , Male , Metabolic Diseases/metabolism , Metabolic Diseases/virology , Methazolamide/pharmacology , Mice , Mice, Inbred C57BL , Mice, Obese , Mice, Transgenic , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects