Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Nat Med ; 28(7): 1476-1485, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1830084

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant of concern has spread rapidly across Brazil since late 2020, causing substantial infection and death waves. Here we used individual-level patient records after hospitalization with suspected or confirmed coronavirus disease 2019 (COVID-19) between 20 January 2020 and 26 July 2021 to document temporary, sweeping shocks in hospital fatality rates that followed the spread of Gamma across 14 state capitals, during which typically more than half of hospitalized patients aged 70 years and older died. We show that such extensive shocks in COVID-19 in-hospital fatality rates also existed before the detection of Gamma. Using a Bayesian fatality rate model, we found that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates were primarily associated with geographic inequities and shortages in healthcare capacity. We estimate that approximately half of the COVID-19 deaths in hospitals in the 14 cities could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization and pandemic preparedness are critical to minimize population-wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Bayes Theorem , Brazil/epidemiology , COVID-19/epidemiology , Hospitals , Humans , SARS-CoV-2
3.
Energy Policy ; 164: 112906, 2022 May.
Article in English | MEDLINE | ID: covidwho-1734380

ABSTRACT

This paper estimates the impact of the COVID-19 on air travel demand and emissions in Brazil, the largest aviation market in Latin America. Combining detailed flight data and data on combustion emission factors, we estimate the CO2 emissions of domestic flights. A Bayesian structural time-series model was used to estimate the impact of COVID-19 on daily trends of air travel demand and emissions. The COVID-19 caused a reduction of 68% in national passengers and 63% in total CO2 emissions compared to what would have occurred if the pandemic had not happened. Despite such a sharp drop, fuel efficiency decreased after the COVID-19 outbreak, and passenger demand recovered to 64.2% of pre-pandemic levels by the end of 2020. The fast recovery in domestic flights by December 2020 indicates that the emissions could soon return to pre-pandemic levels, demonstrating the challenges of reducing emissions in the aviation sector in the short term.

4.
Lancet Regional Health. Americas ; 5:100119-100119, 2021.
Article in English | EuropePMC | ID: covidwho-1652110

ABSTRACT

Background Brazil is one of the countries worst affected by the COVID-19 pandemic with over 20 million cases and 557,000 deaths reported by August 2021. Comparison of real-time local COVID-19 data between areas is essential for understanding transmission, measuring the effects of interventions, and predicting the course of the epidemic, but are often challenging due to different population sizes and structures. Methods We describe the development of a new app for the real-time visualisation of COVID-19 data in Brazil at the municipality level. In the CLIC-Brazil app, daily updates of case and death data are downloaded, age standardised and used to estimate the effective reproduction number (Rt). We show how such platforms can perform real-time regression analyses to identify factors associated with the rate of initial spread and early reproduction number. We also use survival methods to predict the likelihood of occurrence of a new peak of COVID-19 incidence. Findings After an initial introduction in São Paulo and Rio de Janeiro states in early March 2020, the epidemic spread to northern states and then to highly populated coastal regions and the Central-West. Municipalities with higher metrics of social development experienced earlier arrival of COVID-19 (decrease of 11·1 days [95% CI:8.9,13.2] in the time to arrival for each 10% increase in the social development index). Differences in the initial epidemic intensity (mean Rt) were largely driven by geographic location and the date of local onset. Interpretation This study demonstrates that platforms that monitor, standardise and analyse the epidemiological data at a local level can give useful real-time insights into outbreak dynamics that can be used to better adapt responses to the current and future pandemics. Funding This project was supported by a Medical Research Council UK (MRC-UK) -São Paulo Research Foundation (FAPESP) CADDE partnership award (MR/S0195/1 and FAPESP 18/14389-0)

5.
BMJ Glob Health ; 6(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1476465

ABSTRACT

INTRODUCTION: Little evidence exists on the differential health effects of COVID-19 on disadvantaged population groups. Here we characterise the differential risk of hospitalisation and death in São Paulo state, Brazil, and show how vulnerability to COVID-19 is shaped by socioeconomic inequalities. METHODS: We conducted a cross-sectional study using hospitalised severe acute respiratory infections notified from March to August 2020 in the Sistema de Monitoramento Inteligente de São Paulo database. We examined the risk of hospitalisation and death by race and socioeconomic status using multiple data sets for individual-level and spatiotemporal analyses. We explained these inequalities according to differences in daily mobility from mobile phone data, teleworking behaviour and comorbidities. RESULTS: Throughout the study period, patients living in the 40% poorest areas were more likely to die when compared with patients living in the 5% wealthiest areas (OR: 1.60, 95% CI 1.48 to 1.74) and were more likely to be hospitalised between April and July 2020 (OR: 1.08, 95% CI 1.04 to 1.12). Black and Pardo individuals were more likely to be hospitalised when compared with White individuals (OR: 1.41, 95% CI 1.37 to 1.46; OR: 1.26, 95% CI 1.23 to 1.28, respectively), and were more likely to die (OR: 1.13, 95% CI 1.07 to 1.19; 1.07, 95% CI 1.04 to 1.10, respectively) between April and July 2020. Once hospitalised, patients treated in public hospitals were more likely to die than patients in private hospitals (OR: 1.40%, 95% CI 1.34% to 1.46%). Black individuals and those with low education attainment were more likely to have one or more comorbidities, respectively (OR: 1.29, 95% CI 1.19 to 1.39; 1.36, 95% CI 1.27 to 1.45). CONCLUSIONS: Low-income and Black and Pardo communities are more likely to die with COVID-19. This is associated with differential access to quality healthcare, ability to self-isolate and the higher prevalence of comorbidities.


Subject(s)
COVID-19/ethnology , COVID-19/mortality , Hospital Mortality/ethnology , Pneumonia, Viral , Poverty Areas , Residence Characteristics/statistics & numerical data , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , Cross-Sectional Studies , Female , Health Status Disparities , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Seroepidemiologic Studies , Socioeconomic Factors
6.
Science ; 372(6544): 815-821, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1186201

ABSTRACT

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Brazil/epidemiology , Epidemiological Monitoring , Genome, Viral , Genomics , Humans , Models, Theoretical , Molecular Epidemiology , Mutation , Protein Binding , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Viral Load
7.
Sci Data ; 8(1): 73, 2021 03 04.
Article in English | MEDLINE | ID: covidwho-1117653

ABSTRACT

Brazil has one of the fastest-growing COVID-19 epidemics worldwide. Non-pharmaceutical interventions (NPIs) have been adopted at the municipal level with asynchronous actions taken across 5,568 municipalities and the Federal District. This paper systematises the fragmented information on NPIs reporting on a novel dataset with survey responses from 4,027 mayors, covering 72.3% of all municipalities in the country. This dataset responds to the urgency to track and share findings on fragmented policies during the COVID-19 pandemic. Quantifying NPIs can help to assess the role of interventions in reducing transmission. We offer spatial and temporal details for a range of measures aimed at implementing social distancing and the dates when these measures were relaxed by local governments.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , Brazil , COVID-19/transmission , Cities , Humans , Pandemics
8.
Soc Sci Med ; 273: 113773, 2021 03.
Article in English | MEDLINE | ID: covidwho-1091634

ABSTRACT

The rapid spread of COVID-19 across the world has raised concerns about the responsiveness of cities and healthcare systems during pandemics. Recent studies try to model how the number of COVID-19 infections will likely grow and impact the demand for hospitalization services at national and regional levels. However, less attention has been paid to the geographic access to COVID-19 healthcare services and to hospitals' response capacity at the local level, particularly in urban areas in the Global South. This paper shows how transport accessibility analysis can provide actionable information to help improve healthcare coverage and responsiveness. It analyzes accessibility to COVID-19 healthcare at high spatial resolution in the 20 largest cities of Brazil. Using network-distance metrics, we estimate the vulnerable population living in areas with poor access to healthcare facilities that could either screen or hospitalize COVID-19 patients. We then use a new balanced floating catchment area (BFCA) indicator to estimate spatial, income, and racial inequalities in access to hospitals with intensive care unit (ICU) beds and mechanical ventilators while taking into account congestion effects. Based on this analysis, we identify substantial social and spatial inequalities in access to health services during the pandemic. The availability of ICU equipment varies considerably between cities, and it is substantially lower among black and poor communities. The study maps territorial inequalities in healthcare access and reflects on different policy lessons that can be learned for other countries based on the Brazilian case.


Subject(s)
COVID-19 , Catchment Area, Health , Health Services Accessibility , Pandemics , Brazil , Humans , SARS-CoV-2
10.
Science ; 371(6526): 288-292, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-965798

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly in Manaus, the capital of Amazonas state in northern Brazil. The attack rate there is an estimate of the final size of the largely unmitigated epidemic that occurred in Manaus. We use a convenience sample of blood donors to show that by June 2020, 1 month after the epidemic peak in Manaus, 44% of the population had detectable immunoglobulin G (IgG) antibodies. Correcting for cases without a detectable antibody response and for antibody waning, we estimate a 66% attack rate in June, rising to 76% in October. This is higher than in São Paulo, in southeastern Brazil, where the estimated attack rate in October was 29%. These results confirm that when poorly controlled, COVID-19 can infect a large proportion of the population, causing high mortality.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , Epidemics , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Blood Donors , Brazil/epidemiology , COVID-19/blood , COVID-19/mortality , Epidemiological Monitoring , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , Seroepidemiologic Studies , Young Adult
11.
Science ; 369(6508): 1255-1260, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-675945

ABSTRACT

Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Basic Reproduction Number , Bayes Theorem , Betacoronavirus/classification , Brazil/epidemiology , COVID-19 , COVID-19 Testing , Cities/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Europe , Evolution, Molecular , Genome, Viral , Humans , Models, Genetic , Models, Statistical , Pandemics/prevention & control , Phylogeny , Phylogeography , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Spatio-Temporal Analysis , Travel , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL